Skip to main content
Log in

Simulation and evaluation of system of fuzzy linear Fredholm integro-differential equations with fuzzy neural network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, fuzzy neural network (FNN) can be trained with crisp and fuzzy data. The work of this paper is an expansion of the research of fuzzy linear Fredholm integro-differential equations. In this work, we interpret a fuzzy integro-differential equations. In this paper, a novel hybrid method based on FNN and Newton–Cotes methods with positive coefficient for the solution of system of fuzzy linear Fredholm integro-differential equations of the second kind with fuzzy initial values is presented. The problem formulation of the proposed UA is quite straightforward. To obtain the “best-approximated” solution of system of fuzzy linear Fredholm integro-differential equations, the adjustable parameters of PFNN are systematically adjusted by using the learning algorithm. Within this paper, the fuzzy neural network model is used to obtain an estimate for the fuzzy parameters in a statistical sense. Based on the extension principle, a simple algorithm from the cost function of the fuzzy neural network is proposed, in order to find the approximate parameters. We propose a learning algorithm from the cost function for adjusting of fuzzy weights. Here neural network is considered as a part of a larger field called neural computing or soft computing. Finally, we illustrate our approach by some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbasbandy S, Babolian E, Alavi M (2007) Numerical method for solving linear Fredholm fuzzy integral equations of the second kind. Chaos Solitons Fractals 31:138–146

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbasbandy S, Otadi M (2006) Numerical solution of fuzzy polynomials by fuzzy neural network. Appl Math Comput 181:1084–1089

    MathSciNet  MATH  Google Scholar 

  3. Abbasbandy S, Otadi M, Mosleh M (2008) Numerical solution of a system of fuzzy polynomials by fuzzy neural network. Inf Sci 178:1948–1960

    Article  MATH  Google Scholar 

  4. Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, New York

    MATH  Google Scholar 

  5. Allahviranloo T, Ahmady E, Ahmady N (2008) Nth-order fuzzy linear differential eqations. Inf Sci 178:1309–1324

    Article  MATH  Google Scholar 

  6. Allahviranloo T, Ahmady N, Ahmady E (2007) Numerical solution of fuzzy differential eqations by predictor-corrector method. Inf Sci 177:1633–1647

    Article  MATH  Google Scholar 

  7. Atkinson KE (1987) An introduction to numerical analysis. Wiley, New York

    Google Scholar 

  8. Babolian E, Goghary HS, Abbasbandy S (2005) Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method. Appl Math Comput 161:733–744

    MathSciNet  MATH  Google Scholar 

  9. Bede B, Rudas IJ, Bencsik AL (2007) First order linear fuzzy differential eqations under generalized differentiability. Inf Sci 177:1648–1662

    Article  MATH  Google Scholar 

  10. Bernard JF (1988) Use of rule-based system for process control. IEEE Control Syst Mag 8:3–13

    Article  Google Scholar 

  11. Buckley JJ, Hayashi Y (1994) Can fuzzy neural nets approximate continuous fuzzy functions? Fuzzy Sets Syst 61:43–51

    Article  MathSciNet  MATH  Google Scholar 

  12. Buckley JJ, Hayashi Y (1994) Fuzzy neural networks. Fuzzy Sets Syst 66:1–13

    Article  MathSciNet  MATH  Google Scholar 

  13. Buckley JJ, Feuring T (2000) Fuzzy differential equations. Fuzzy Sets Syst 110:69–77

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang SL, Zadeh LA (1972) On fuzzy mapping and control. IEEE Trans Syst Man Cybemet 2:30–34

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen YC, Teng CC (1995) A model reference control structure using a fuzzy neural network. Fuzzy Sets Syst 73:291–312

    Article  MathSciNet  MATH  Google Scholar 

  16. Dubey G, Kumar Sh (2016) Improvement in the numerical method for integrating weight function of pre-cracked specimen. Eng Fract Mech 154:83–91

    Article  Google Scholar 

  17. Dubois D, Prade H (1978) Operations on fuzzy numbers. J Syst Sci 9:613–626

    Article  MathSciNet  MATH  Google Scholar 

  18. Dubois D, Prade H (1982) Towards fuzzy differential calculus: part 3, differentiation. Fuzzy Sets Syst 8:225–233

    Article  MATH  Google Scholar 

  19. Effati S, Pakdaman M (2010) Artificial neural network approach for solving fuzzy differential equations. Inf Sci 180:1434–1457

    Article  MathSciNet  MATH  Google Scholar 

  20. Fei W (2007) Existence and uniqueness of solution for fuzzy random differential equations with non-lipschitz coefficients. Inf Sci 177:4329–4337

    Article  MathSciNet  MATH  Google Scholar 

  21. Friedman M, Ma M, Kandel A (1999) Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets Syst 106:35–48

    Article  MathSciNet  MATH  Google Scholar 

  22. Goetschel R, Voxman W (1986) Elementary fuzzy calculus. Fuzzy Sets Syst 18:31–43

    Article  MathSciNet  MATH  Google Scholar 

  23. Hayashi Y, Buckley JJ, Czogala E (1992) Fuzzy neural network with fuzzy signals and weights. Int J Intell Syst 8:527–537

    Article  MATH  Google Scholar 

  24. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, New Jersey

    MATH  Google Scholar 

  25. Hochstadt H (1973) Integral equations. Wiley, New York

    MATH  Google Scholar 

  26. Hornick K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  MATH  Google Scholar 

  27. Ishibuchi H, Fujioka R, Tanaka H (1992) An architecture of neural networks for input vectors of fuzzy numbers. In: Proceedings of IEEE international conference on fuzzy systems, pp 1293–1300

  28. Ishibuchi H, Kwon K, Tanaka H (1995) A learning algorithm of fuzzy neural networks with triangular fuzzy weights. Fuzzy Sets Syst 71:277–293

    Article  Google Scholar 

  29. Ishibuchi H, Morioka K, Turksen IB (1995) Learning by fuzzified neural networks. Int J Approx Reason 13:327–358

    Article  MATH  Google Scholar 

  30. Ishibuchi H, Nii M (2001) Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules. Fuzzy Sets Syst 120:281–307

    Article  MathSciNet  MATH  Google Scholar 

  31. Ishibuchi H, Okada H, Tanaka H (1993) Fuzzy neural networks with fuzzy weights and fuzzy biases. In: Proceedings of ICNN 93, San Francisco, pp 1650–1655

  32. Ishibuchi H, Tanaka H, Okada H (1993) Fuzzy neural networks with fuzzy weights and fuzzy biases. In: Proceedings of 1993 IEEE international conferences on neural networks, pp 1650–1655

  33. Jin C, Ding J (2016) Solving Fredholm integral equations via a piecewise linear maximum entropy method. J Comput Appl Math 304:130–137

    Article  MathSciNet  MATH  Google Scholar 

  34. Kaleva O (1987) Fuzzy differential equations. Fuzzy Sets Syst 24:301–317

    Article  MathSciNet  MATH  Google Scholar 

  35. Khanna T (1990) Foundations of neural networks. Addison-Wesly, Reading

    MATH  Google Scholar 

  36. Klir GJ, Clair US, Yuan B (1997) Fuzzy set theory: foundations and applications. Prentice-Hall Inc., Upper Saddle River

    MATH  Google Scholar 

  37. Krishnamraju PV, Buckley JJ, Relly KD, Hayashi Y (1994) Genetic learning algorithms for fuzzy neural nets. In: Proceedings of IEEE international conference on fuzzy systems, pp 1969–1974

  38. Lagaris IE, Likas A (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000

    Article  Google Scholar 

  39. Lapedes A, Farber R (1988) How neural nets work? In: Anderson DZ (ed) Neural information processing systems. AIP, Melvillepp, pp 442–456

    Google Scholar 

  40. Leng G, Prasad G, McGinnity TM (2004) An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Netw 17:1477–1493

    Article  MATH  Google Scholar 

  41. Lin D, Wang X (2010) Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation. Fuzzy Sets Syst 161:2066–2080

    Article  MathSciNet  MATH  Google Scholar 

  42. Lin D, Wang X (2011) Self-organizing adaptive fuzzy neural control for the synchronization of uncertain chaotic systems with random-varying parameters. Neurocomputing 74:2241–2249

    Article  Google Scholar 

  43. Lin D, Wang X, Nian F, Zhang Y (2010) Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing 73:2873–2881

    Article  Google Scholar 

  44. Lippmann RP (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22

    Article  Google Scholar 

  45. Malek A, Shekari Beidokhti R (2006) Numerical solution for high order differential equations using a hybrid neural network-optimization method. Appl Math Comput 183:260–271

    MathSciNet  MATH  Google Scholar 

  46. Mizukoshi MT, Barros LC, Chalco-Cano Y, Romn-Flores H, Bassanezi RC (2007) Fuzzy differential equations and the extention principle. Inf Sci 177:3627–3635

    Article  MATH  Google Scholar 

  47. Mosleh M (2013) Fuzzy neural network for solving a system of fuzzy differential equations. Appl Soft Comput 13:3597–3607

    Article  Google Scholar 

  48. Mosleh M (2014) Numerical solution of fuzzy linear Fredholm integro-differential equation by fuzzy neural network. Iran J Fuzzy Syst Iran J Fuzzy Syst 11:91–112

    MathSciNet  MATH  Google Scholar 

  49. Mosleh M, Otadi M (2015) Numerical solutions of nonlinear fuzzy Fredholm integro-differential equations of the second kind. Iran J Fuzzy Syst 12:117–127

    MathSciNet  MATH  Google Scholar 

  50. Mosleh M, Allahviranloo T, Otadi M (2012) Evaluation of fully fuzzy regression models by fuzzy neural network. Neural Comput Appl 21:105–112

    Article  Google Scholar 

  51. Mosleh M, Otadi M (2012) Simulation and evaluation of fuzzy differential equations by fuzzy neural network. Appl Soft Comput 12:2817–2827

    Article  Google Scholar 

  52. Mosleh M, Otadi M (2012) Minimal solution of fuzzy linear system of differential equations. Neural Comput Appl 21:329–336

    Article  MATH  Google Scholar 

  53. Mosleh M, Otadi M, Abbasbandy S (2010) Evaluation of fuzzy regression models by fuzzy neural network. J Comput Appl Math 234:825–834

    Article  MathSciNet  MATH  Google Scholar 

  54. Mosleh M, Otadi M, Abbasbandy S (2011) Fuzzy polynomial regression with fuzzy neural networks. Appl Math Model 35:5400–5412

    Article  MathSciNet  MATH  Google Scholar 

  55. Otadi M (2014) Fully fuzzy polynomial regression with fuzzy neural networks. Neurocomputing 142:486–493

    Article  Google Scholar 

  56. Otadi M, Mosleh M (2011) Simulation and evaluation of dual fully fuzzy linear systems by fuzzy neural network. Appl Math Model 35:5026–5039

    Article  MathSciNet  MATH  Google Scholar 

  57. Otadi M, Mosleh M (2016) Simulation and evaluation of interval-valued fuzzy linear Fredholm integral equations with interval-valued fuzzy neural network. Neurocomputing 205:519–528

    Article  Google Scholar 

  58. Otadi M, Mosleh M, Abbasbandy S (2011) Numerical solution of fully fuzzy linear systems by fuzzy neural network. Soft Comput 15:1513–1522

    Article  MATH  Google Scholar 

  59. Papaschinopoulos G, Stefanidou G, Efraimidis P (2007) Existence, uniquencess and asymptotic behavior of the solutions of a fuzzy differential equation with piecewise constant argument. Inf Sci 177:3855–3870

    Article  MATH  Google Scholar 

  60. Picton P (2000) Neural networks, 2nd edn. Palgrave, Great Britain

    Google Scholar 

  61. Puri ML, Ralescu DA (1983) Differentials of fuzzy functions. J Math Anal Appl 91:552–558

    Article  MathSciNet  MATH  Google Scholar 

  62. Rodriguez-Lopez R (2008) Comparison results for fuzzy differential eqations. Inf Sci 178:1756–1779

    Article  MathSciNet  MATH  Google Scholar 

  63. Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Sets Syst 24:319–330

    Article  MathSciNet  MATH  Google Scholar 

  64. Schalkoff RJ (1997) Artificial neural networks. McGraw-Hill, New York

    MATH  Google Scholar 

  65. Stanley J (1990) Introduction to neural networks. Scientific software, Pasadena, CA

    Google Scholar 

  66. Tung WL, Quek C (2002) A generic self-organizing fuzzy neural network. IEEE Trans Neural Netw 13:1075–1086

    Article  Google Scholar 

  67. Wang X, Zhao J (2010) Cryptanalysis on a parallel keyed hash function based on chaotic neural network. Neurocomputing 73:3224–3228

    Article  Google Scholar 

  68. Xingyuan W, Bing X, Huaguang Z (2010) A multi-ary number communication system based on hyperchaotic system of 6th-order cellular neural network. Commun Nonlinear Sci Numer Simul 15:124–133

    Article  Google Scholar 

  69. Zadeh LA (1975) The concept of a liguistic variable and its application to approximate reasoning: parts 1–3. Inf Sci 8:199–249, 301–357; 9 (1975) 43–80

  70. Zadeh LA (2008) Is there a need for fuzzy logic? Inf Sci 178:2751–2779

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhang HG, Liu DR (2006) Fuzzy modeling and fuzzy control. Birhauser, Boston

    MATH  Google Scholar 

  72. Zhang HG, Quan YB (2001) Modeling, identification, and control of a class of nonlinear systems. IEEE Trans Fuzzy Syst 9:349–354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mosleh.

Ethics declarations

Conflict of interest

This work was supported by the Islamic Azad University Firoozkooh of Iran.

Appendices

Appendix 1

Definition 6.1

([21, 22]). Let \(f:[a,b]\longrightarrow E^1\), for each partition \(p=\{t_0,t_1,\ldots , t_n\}\) of [ab] and for arbitrary \(\xi _i\in [t_{i-1},t_i],1\le i\le n\) suppose

$$\begin{aligned} \begin{array}{cc} R_p=\sum _{i=1}^nf(\xi _i)(t_i-t_{i-1}),\\ \\ \Delta {:}{=}\mathrm{max}\{|t_i-t_{i-1}|,i=1,2,\ldots ,n\}. \end{array} \end{aligned}$$

The definite integral of f(t) over [ab] is

$$\begin{aligned} \int _{a}^{b}f(t){\mathrm{d}}t={\mathrm{lim}}_{\Delta \longrightarrow 0}R_p \end{aligned}$$

provided that this limit exists in the metric D.

If the fuzzy function f(t) is continuous in the metric D, its definite integral exists [22] and also

$$\begin{aligned} \begin{array}{cc} \left( \underline{\int _{a}^{b}f(t;r){\mathrm{d}}t}\right) =\int _{a}^{b}{\underline{f}}(t;r){\mathrm{d}}t,\\ \\ \left( \overline{\int _{a}^{b}f(t;r){\mathrm{d}}t}\right) =\int _{a}^{b}{\overline{f}}(t;r){\mathrm{d}}t. \end{array} \end{aligned}$$

Definition 6.2

Let \(u,v\in E^1\). If there exists \(w\in E^1\) such that \(u=v+w\) then w is called the H-difference of uv and it is denoted by \(u-v.\)

Definition 6.3

A function \(f:(a,b)\longrightarrow E^1\) is called H-differentiable at \({\hat{t}}\in (a,b)\) if, for \(h>0\) sufficiently small, there exist the H-differences \(f({\hat{t}}+h)-f({\hat{t}}),f({\hat{t}})-f({\hat{t}}-h),\) and an element \(f^{\prime }({\hat{t}})\in E^1\) such that:

$$\begin{aligned} {\mathrm{lim}}_{h\longrightarrow 0^+}D\left( \frac{f({\hat{t}}+h)-f({\hat{t}})}{h},f^{\prime }({\hat{t}})\right) = {\mathrm{lim}}_{h\longrightarrow 0^+}D\left( \frac{f({\hat{t}})-f({\hat{t}}-h)}{h},f^{\prime }({\hat{t}})\right) =0. \end{aligned}$$

Then, \(f^{\prime }({\hat{t}})\) is called the fuzzy derivative of f at \({\hat{t}}.\)

Appendix 2: Derivation of a learning algorithm in PFNN

Let us denote the fuzzy connection weights \(V_{pj},\ p=1,\ldots ,n,\ j=1,\ldots ,m\) to the output unit by its parameter values as \(V_{pj}=(v_{pj}^{(1)},\ldots ,v_{pj}^{(q)},\ldots ,v_{pj}^{(r)})\). The amount of modification of each parameter value for problem (16) is written as [28]

$$\begin{aligned} v_{ij}^{(q)}(t+1)= & \,v_{ij}^{(q)}(t)+\bigtriangleup v_{pj}^{(q)}(t),\\ \bigtriangleup v_{pj}^{q}(t)= & -\eta \sum _{i=1}^{n}\sum _{k=1}^{g}\frac{\partial e_{ikh}}{\partial v_{pj}^{(q)}}+\alpha .\bigtriangleup v_{pj}^{(q)}(t-1), \end{aligned}$$

where t indexes the number of adjustments, \(\eta\) is a learning rate (positive real number) and \(\alpha\) is a momentum term constant (positive real number).

Thus, our problem is to calculate the derivative \(\frac{\partial e_{ikh}}{\partial v_{pj}^{(q)}}\). Let us rewrite \(\frac{\partial e_{ikh}}{\partial v_{pj}^{(q)}}\) as follows:

$$\begin{aligned} \frac{\partial e_{ikh}}{\partial v_{pj}^{(q)}}=\frac{\partial e_{ikh}}{\partial [V_{pj}]_h^{L}}.\frac{\partial [V_{ij}]_h^{L}}{\partial v_{pj}^{(q)}}+\frac{\partial e_{ikh}}{\partial [V_{pj}]_h^{U}}.\frac{\partial [V_{pj}]_h^{U}}{\partial v_{pj}^{(q)}}. \end{aligned}$$

In this formulation, \(\frac{\partial [V_{ij}]_h^{L}}{\partial v_{ij}^{(q)}}\) and \(\frac{\partial [V_{ij}]_h^{U}}{\partial v_{ij}^{(q)}}\) are easily calculated from the membership function of the fuzzy connection weight \(V_{ij}\).

On the other hand, the derivatives \(\frac{\partial e_{ikh}}{\partial [V_{ij}]_h^L}\) and \(\frac{\partial e_{ikh}}{\partial [V_{ij}]_h^U}\) are independent of the shape of the fuzzy connection weight. They can be calculated from the cost function \(e_{ikh}\) using the input–output relation of our fuzzy neural network for the h-level sets. When we use the cost function with the weighting scheme in (29), \(\frac{\partial e_{ikh}}{\partial [V_{pj}]_h^L}\) and \(\frac{\partial e_{ikh}}{\partial [V_{pj}]_h^U},\) are calculated as follows:

[Calculation of \(\frac{\partial e_{ikh}}{\partial [V_{pj}]_h^L}\)]

If \(i=p\) then we have

$$\begin{aligned} \frac{\partial e_{ikh}}{\partial [V_{ij}]_h^{L}}= & \,\delta ^L.\left[ \frac{\partial [N_i(x_k,P_i)]_h^L }{\partial [V_{ij}]_h^{L}}+(x_k-a).\frac{\partial z_{ij}}{\partial x}\right. \\&\left. -\frac{\partial [f_i(x_k,y_{T_1}(x_k,P_1),\ldots ,,y_{T_n}(x_k,P_n))]_h^L}{\partial [y_{T_i}(x_k,P_i)]_h^{L}}.\frac{\partial [y_{T_i}(x_k,P_i))]_h^L}{\partial [V_{ij}]_h^{L}}\right] , \end{aligned}$$

where

$$\begin{aligned} \delta ^L= & \left( \left[ \frac{{\mathrm{d}}y_{T_i}(x_k,P_i)}{{\mathrm{d}}x}\right] _h^L-\left[f_i(x_k,y_{T_1}(x_k,P_1),\ldots ,,y_{T_n}(x_k,P_n))\right]_h^L\right) ,\\ \left. \frac{\partial [y_{T_i}(x_k,P_i))]_h^L}{\partial [V_{ij}]_h^{L}}\right]= & (x_k-a).z_{ij}, \quad \frac{\partial N_i(x_k,P_i)]_h^L }{\partial [V_{ij}]_h^{L}}=z_{ij}, \end{aligned}$$

otherwise

$$\begin{aligned}&\frac{\partial e_{ikh}}{\partial [V_{pj}]_h^{L}}= \delta ^L.\left[ -\frac{\partial [f_i(x_k,y_{T_1}(x_k,P_1),\ldots ,,y_{T_n}(x_k,P_n))]_h^L}{\partial [y_{T_p}(x_k,P_i)]_h^{L}}.\frac{\partial [y_{T_p}(x_k,P_i))]_h^L}{\partial [V_{pj}]_h^{L}}\right] . \end{aligned}$$

[Calculation of \(\frac{\partial e_{ikh}}{\partial [V_{pj}]_h^U}\)]

If \(i=p\) then we have

$$\begin{aligned} \frac{\partial e_{ikh}}{\partial [V_{ij}]_h^{U}}= & \,\delta ^U.\left[ \frac{\partial N_i(x_k,P_i)]_h^U }{\partial [V_{ij}]_h^{U}}+(x_k-a).\frac{\partial z_{ij}}{\partial x}\right. \\&\left. - \frac{\partial [f_i(x_k,y_{1T}(x_k,P_1),\ldots ,,y_{nT}(x_k,P_n))]_h^U}{\partial [y_{iT}(x_k,P_i)]_h^{U}}.\frac{\partial [y_{iT}(x_k,P_i))]_h^U}{\partial [V_{ij}]_h^{U}}\right] , \end{aligned}$$

where

$$\begin{aligned} \delta ^U= & \left( \left[ \frac{{\mathrm{d}}y_{T_i}(x_k,P_i)}{{\mathrm{d}}x}\right] _h^U-[f_i(x_k,y_{T_1}(x_k,P_1),\ldots ,,y_{T_n}(x_k,P_n))]_h^U\right) ,\\ \left. \frac{\partial [y_{T_i}(x_k,P_i))]_h^U}{\partial [V_{ij}]_h^{U}}\right]= & (x_k-a).z_{ij}, \quad \frac{\partial N_i(x_k,P_i)]_h^U }{\partial [V_{ij}]_h^{U}}=z_{ij}, \end{aligned}$$

otherwise

$$\begin{aligned} \frac{\partial e_{ikh}}{\partial [V_{pj}]_h^{U}}= \delta ^U.\left[ -\frac{\partial [f_i(x_k,y_{1T}(x_k,P_1),\ldots ,,y_{nT}(x_k,P_n))]_h^U}{\partial [y_{T_p}(x_k,P_i)]_h^{U}}.\frac{\partial [y_{T_p}(x_k,P_i))]_h^U}{\partial [V_{pj}]_h^{U}}\right] , \end{aligned}$$

In our PFNN, the connection weights and biases to the hidden units are real numbers. The nonfuzzy connection weight \(w_{pj}\) to the jth hidden unit is updated in the same manner as the parameter values of the fuzzy connection weight \(V_{pj}\) as follows:

$$\begin{aligned} w_{pj}(t+1)= & w_{pj}(t)+\bigtriangleup w_{pj}(t),\\ \bigtriangleup w_{pj}(t)= & -\eta \sum _{i=1}^{n}\sum _{k=1}^{g} \frac{\partial e_{ikh}}{\partial w_{pj}} +\alpha \bigtriangleup w_{pj} (t-1). \end{aligned}$$

The derivative \(\frac{\partial e_{ikh}}{\partial w_{pj}}\) can be calculated from the cost function \(e_{ikh}\) using the input–output relation of our PFNN for the h-level sets. When we use the cost function with the weighting scheme, \(\frac{\partial e_{ikh}}{\partial w_{pj}}\) for \(i=p\) is calculated as follows:

$$\begin{aligned} \frac{\partial e_{ikh}}{\partial w_{ij}}= & \delta ^L.\left[ \frac{\partial [N_i(x_k,P_i)]_h^L }{\partial w_{ij}}+(x_k-a).[V_{ij}]_h^L.z_{ij}+(x_k-a).x_k.[V_{ij}]_h^L.z_{ij}(1-z_{ij})w_{ij}\right. \\&-(x_k-a).[V_{ij}]_h^L.z_{ij}^2-2(x_k-a).x_k.[V_{ij}]_h^L.z_{ij}^2(1-z_{ij})w_{ij}\\&-\left( \frac{\partial [f_i(x_k,y_{T_1}(x_k,P_1),\ldots ,,y_{T_n}(x_k,P_n))]_h^L}{\partial [y_{T_i}(x_k,P_i))]_h^L}\right. \\&\left. \left. .\frac{\partial [y_{T_i}(x_k,P_i)]_h^L}{\partial w_{ij}}+\frac{\partial [f_i(x_k,y_{T_1}(x_k,P_1),\ldots ,,y_{T_n}(x_k,P_n))]_h^L}{\partial [y_{T_i}(x,P_i))]_h^U}.\frac{\partial [y_{T_i}(x_k,P_i)]_h^U}{\partial w_{ij}}\right) \right] \\&+\delta ^U.\left[ \frac{\partial N_i(x_k,P_i)]_h^U }{\partial w_{ij}}+(x_k-a).[V_{ij}]_h^U.z_{ij}+(x_k-a).x_k.[V_{ij}]_h^U.z_{ij}(1-z_{ij})w_{ij}\right. \\&-(x_k-a).[V_{ij}]_h^U.z_{ij}^2-2(x_k-a).x_k.[V_{ij}]_h^U.z_{ij}^2(1-z_{ij})w_{ij}\\&-\left( \frac{\partial [f_i(x_k,y_{T_1}(x_k,P_1),\ldots ,,y_{T_n}(x_k,P_n))]_h^U}{\partial [y_{T_i}(x_k,P_i))]_h^L}\right. \\&\left. \left. .\frac{\partial [y_{T_i}(x_k,P_i)]_h^L}{\partial w_{ij}}+\frac{\partial [f_i(x_k,y_{T_1}(x_k,P_1),\ldots ,,y_{T_n}(x_k,P_n))]_h^U}{\partial [y_{T_i}(x_k,P_i))]_h^U}.\frac{\partial [y_{T_i}(x_k,P_i)]_h^U}{\partial w_{ij}}\right) \right] , \end{aligned}$$

where

$$\begin{aligned} \frac{\partial [N_i(x_k,P_i)]_h^L }{\partial w_{ij}}= & \frac{\partial [N_i(x_k,P_i)]_h^L }{\partial z_{ij}}.\frac{\partial z_{ij} }{\partial net_{ij}}.\frac{\partial net_{ij}}{\partial w_{ij}}=[V_{ij}]_h^L.z_{ij}.(1-z_{ij}).x_k,\\ \frac{\partial [N_i(x_k,P_i)]_h^U }{\partial w_{ij}}= & \frac{\partial [N_i(x_k,P_i)]_h^U }{\partial z_{ij}}.\frac{\partial z_{ij}}{\partial net_{ij}}.\frac{\partial net_{ij}}{\partial w_{ij}}=[V_{ij}]_h^U.z_{ij}.(1-z_{ij}).x_k,\\ \frac{\partial [y_{T_i}(x_k,P_i))]_h^L }{\partial w_{ij}}= & (x_k-a).\frac{\partial [N_i(x_k,P_i)]_h^L }{\partial w_{ij}},\\ \frac{\partial [y_{T_i}(x_k,P_i))]_h^U }{\partial w_{ij}}= & (x_k-a).\frac{\partial [N_i(x_k,P_i)]_h^U }{\partial w_{ij}}. \end{aligned}$$

The nonfuzzy \(w_{pj}\) for \(i\ne p\) and nonfuzzy biases to the hidden units are updated in the same manner as above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosleh, M., Otadi, M. Simulation and evaluation of system of fuzzy linear Fredholm integro-differential equations with fuzzy neural network. Neural Comput & Applic 31, 3481–3491 (2019). https://doi.org/10.1007/s00521-017-3267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3267-2

Keywords

Navigation