Skip to main content
Log in

Deep neural networks architecture driven by problem-specific information

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Deep learning provides a variety of neural network-based models, known as deep neural networks (DNNs), which are being successfully used in several domains to build highly accurate predictors. A key factor which usually makes DNNs to outperform traditional machine learning models is the amount of data that is nowadays accessible and available. Nevertheless, there are other factors linked to DNNs topologies that may also have influence on the predictive performance of DNN models. In particular, fully connected deep neural networks (fc-DNNs) typically struggle in achieving good performance rates when applied to small datasets. This is due to the high number of parameters which need to be learned when training this kind of models, which makes them prone to over-fitting issues. In this paper, authors propose the use of problem-specific information in order to impose constraints to network architecture so that a fc-DNN is transformed into a partially connected DNN (pc-DNN), in such a way that network topology is driven by prior knowledge. This work compares two baseline models, the elastic net and fc-DNNs, to pc-DNNs applied on three synthetic datasets with different number of samples. Synthetic data was generated to estimate the goodness of using problem-specific information to drive network architectures. Furthermore, a similar analysis is performed herein on a real-world problem dataset to show the benefits of pc-DNN models in term of predictive performance. The results of the analysis showed that pc-DNNs with built-in problem-specific information clearly outperformed the elastic net and fc-DNNs in most of the datasets used, in either synthetic or real-world problems. The pc-DNNs turned out to be a useful model, especially when it is applied to small- or medium-size datasets, on which it significantly outperformed the baseline models considered in this study. Specifically, the pc-DNNs achieved AUC and MSE improvement rates of (\(8.21\%\), \(19.79\%\)) and (\(6.65\%\), \(20.54\%\)) in small- and medium-size datasets for both case studies analyzed, the synthetic and real-world problem, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Code available at: https://github.com/durda-ubu/pcDNNs/blob/main/code/activations.py.

  2. Data available at: https://github.com/durda-ubu/pcDNNs/tree/main/synthetic%20dataset.

  3. Apply for access at: http://www.juntadeandalucia.es/medioambiente/servtc5/WebClima/menu_consultas.jsp?b=s.

References

  1. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  2. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. CVPR. IEEE Computer Society, Washington, pp 770–778

    Google Scholar 

  3. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25. Curran Associates, Inc., New York, pp 1097–1105

    Google Scholar 

  4. Cao Y, Geddes TA, Hwa Yang JY, Yang P (2020) Ensemble deep learning in bioinformatics. Nat Mach Intell 2(9):500–508

    Article  Google Scholar 

  5. Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learning for computational biology. Mol Syst Biol 12(7):878

    Article  Google Scholar 

  6. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118

    Article  Google Scholar 

  7. Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Hulsbergen-Van De Kaa C, Bult P, Van Ginneken B, Van Der Laak J (2016) Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6(26):286

    Google Scholar 

  8. Amodei D, Ananthanarayanan S, et al (2016) Deep speech 2 : end-to-end speech recognition in english and mandarin. In: Balcan MF, Weinberger KQ (eds.) Proceedings of The 33rd international conference on machine learning, proceedings of machine learning research. PMLR. vol. 48, pp. 173–182

  9. Shang C, Yang F, Huang D, Lyu W (2014) Data-driven soft sensor development based on deep learning technique. J Process Control 24(3):223–233

    Article  Google Scholar 

  10. Lee D, Kang S, Shin J (2017) Using deep learning techniques to forecast environmental consumption level. Sustain Sci Pract Policy 9(10):1894

    Google Scholar 

  11. Banko M, Brill E (2001) Scaling to very very large corpora for natural language disambiguation. In: Proceedings of the 39th annual meeting on association for computational linguistics, ACL ’01, pp 26–33

  12. Pereira F, Norvig P, Halevy A (2009) The unreasonable effectiveness of data. IEEE Intell Syst 24:8–12

    Google Scholar 

  13. Koumakis L (2020) Deep learning models in genomics; are we there yet? Comput Struct Biotechnol J 18:1466–1473

    Article  Google Scholar 

  14. Tobore I, Li J, Yuhang L, Al-Handarish Y, Kandwal A, Nie Z, Wang L (2019) Deep learning intervention for health care challenges: some biomedical domain considerations. JMIR mHealth uHealth 7(8):e11966

    Article  Google Scholar 

  15. Moradi R, Berangi C, Minaei B (2020) A survey of regularization strategies for deep models. Artif Intell Rev 53(6):3947–3985. https://doi.org/10.1007/s10462-019-09784-7

    Article  Google Scholar 

  16. Lu J, Behbood V, Hao P, Zuo H, Xue S, Zhang G (2015) Transfer learning using computational intelligence: a survey. Knowl Based Syst 80:14–23. https://doi.org/10.1016/j.knosys.2015.01.010

    Article  Google Scholar 

  17. Shorten C, Khoshgoftaar TM (2019) A n for deep learning. J Big Data. https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  18. Antoniou A, Storkey A, Edwards H (2018) Data augmentation generative adversarial networks

  19. Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Gr Stat 22(2):231–245

    Article  MathSciNet  Google Scholar 

  20. Sagi O, Rokach L (2018) Ensemble learning: a survey. WIREs Data Min Knowl Discov 8(4):e1249. https://doi.org/10.1002/widm.1249

    Article  Google Scholar 

  21. Nusrat I, Jang SB (2018) A comparison of regularization techniques in deep neural networks. Symmetry 10(11):648

    Article  Google Scholar 

  22. Ghods A, Cook DJ (2020) A survey of deep network techniques all classifiers can adopt. Data Min Knowl Discov. https://doi.org/10.1007/s10618-020-00722-8

    Article  Google Scholar 

  23. Noh H, You T, Mun J, Han B (2017) Regularizing deep neural networks by noise: its interpretation and optimization. In: Guyon I, Luxburg UV, Bengio , Wallach H, Fergus R, Vishwanathan S, Garnett R (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5109–5118. Curran Associates, Inc.. https://proceedings.neurips.cc/paper/2017/file/217e342fc01668b10cb1188d40d3370e-Paper.pdf

  24. Khan SH, Hayat M, Porikli F (2019) Regularization of deep neural networks with spectral dropout. Neural Netw 110:82–90. https://doi.org/10.1016/j.neunet.2018.09.009

    Article  Google Scholar 

  25. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Article  MATH  Google Scholar 

  26. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial networks

  27. Moreno-Barea FJ, Strazzera F, Jerez JM, Urda D, Franco L (2018) Forward noise adjustment scheme for data augmentation. In: 2018 IEEE symposium series on computational intelligence (SSCI), pp 728–734

  28. Kingma DP, Welling M (2014) Auto-Encoding Variational Bayes. In: 2nd international conference on learning representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings

  29. Li X, Zhang W, Ding Q, Sun JQ (2020) Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation. J Intell Manuf 31:433–452. https://doi.org/10.1007/s10845-018-1456-1

    Article  Google Scholar 

  30. Liu S, Lee K, Lee I (2020) Document-level multi-topic sentiment classification of email data with bilstm and data augmentation. Knowl Based Syst 197(105):918. https://doi.org/10.1016/j.knosys.2020.105918

    Article  Google Scholar 

  31. Pan SJ, Yang Q et al (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  32. Liang G, Zheng L (2020) A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Comput Method Progr Biomed 187(104):964. https://doi.org/10.1016/j.cmpb.2019.06.023

    Article  Google Scholar 

  33. Khan S, Islam N, Jan Z, Ud Din I, Rodrigues JJPC (2019) A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit Lett 125:1–6. https://doi.org/10.1016/j.patrec.2019.03.022

    Article  Google Scholar 

  34. Wei W,Meng D, Zhao Q, Xu Z, Wu (2019) emi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)

  35. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ (2020) Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res 21(140):1–67

    MathSciNet  MATH  Google Scholar 

  36. Al-Smadi M, Al-Zboon S, Jararweh Y, Juola P (2020) Transfer learning for Arabic named entity recognition with deep neural networks. IEEE Access 8:37736–37745. https://doi.org/10.1109/ACCESS.2020.2973319

    Article  Google Scholar 

  37. López-García G, Jerez JM, Franco L, Veredas FJ (2020) Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data. PLoS One 15(3):e0230536

    Article  Google Scholar 

  38. Pesciullesi G, Schwaller P, Laino T, Reymond JL (2020) Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates. Nat Commun 11:4874. https://doi.org/10.1038/s41467-020-18671-7

    Article  Google Scholar 

  39. Mocanu DC, Mocanu E, Stone P, Nguyen PH, Gibescu M, Liotta A (2018) Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nat Commun 9(1):2383

    Article  Google Scholar 

  40. Nosrati MS, Hamarneh G (2016) Incorporating prior knowledge in medical image segmentation: a survey. CoRR abs/1607.01092. http://arxiv.org/abs/1607.01092

  41. Luque-Baena R, Urda D, Gonzalo Claros M, Franco L, Jerez J (2014) Robust gene signatures from microarray data using genetic algorithms enriched with biological pathway keywords. J Biomed Inform 49:32–44. https://doi.org/10.1016/j.jbi.2014.01.006

    Article  Google Scholar 

  42. Kim Y, Kim Y, Lee S, Yang H, Kim S (2019) Personalized prediction of acquired resistance to EGFR-targeted inhibitors using a pathway-based machine learning approach. Cancers 11(1):45. https://doi.org/10.3390/cancers11010045

    Article  Google Scholar 

  43. Urda D, Aragón F, Bautista R, Franco L, Veredas FJ, Claros MG, Jerez JM (2018) BLASSO: integration of biological knowledge into a regularized linear model. BMC Syst Biol 12(Suppl 5):94

    Article  Google Scholar 

  44. Frecon J, Salzo S, Pontil M (2018) Bilevel learning of the group lasso structure. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds) Advances in neural information processing systems 31. Curran Associates, Inc., New York, pp 8301–8311

    Google Scholar 

  45. Tian S, Wang C, Wang B (2019) Incorporating pathway information into feature selection towards better performed gene signatures. BioMed Res Int 2019. https://doi.org/10.1155/2019/2497509

    Article  Google Scholar 

  46. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  47. Nilashi M, Bagherifard K, Rahmani M, Rafe V (2017) A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques. Comput Ind Eng 109:357–368. https://doi.org/10.1016/j.cie.2017.05.016

    Article  Google Scholar 

  48. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67:301–320

    Article  MathSciNet  MATH  Google Scholar 

  49. Tibshirani R (1996) Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B (Stat Methodol) 58(1):267–288

    MATH  Google Scholar 

  50. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  Google Scholar 

  51. Hassabis D, Kumaran D, Summerfield C, Botvinick M (2017) Neuroscience-inspired artificial intelligence. Neuron 95(2):245–258. https://doi.org/10.1016/j.neuron.2017.06.011

    Article  Google Scholar 

  52. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on international conference on machine learning, ICML’10, pp 807–814

  53. KiseÎák J, Lu Y, Svihra J, Szépe P, Stehlík M, (2020) SPOCU: scaled polynomial constant unit activation function. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05182-1

    Article  Google Scholar 

  54. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  55. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR. http://arxiv.org/abs/1502.03167

  56. Chollet F, Allaire J, et al (2017) R interface to keras. https://github.com/rstudio/keras

  57. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. CoRR abs/1412.6980. http://arxiv.org/abs/1412.6980

  58. Eum KD, Kazemiparkouhi F, Wang B, Manjourides J, Pun V, Pavlu V, Suh H (2019) Long-term NO2 exposures and cause-specific mortality in american older adults. Environ Int 124:10–15

    Article  Google Scholar 

  59. Sanyal S, Rochereau T, Maesano CN, Com-Ruelle L, Annesi-Maesano I (2018) Long-Term effect of outdoor air pollution on mortality and morbidity: a 12-year Follow-Up study for metropolitan France. Int J Environ Res Public Health 15(11):2487

    Article  Google Scholar 

  60. Sabolová R, Sečkárová V, Dušek J, Stehlík M (2015) Entropy based statistical inference for methane emissions released from wetland. Chemom Intell Lab Syst 141:125–133. https://doi.org/10.1016/j.chemolab.2014.12.008

    Article  Google Scholar 

  61. Kříž R (2014) Chaos in nitrogen dioxide concentration time series and its prediction. In: Zelinka I, Suganthan PN, Chen G, Snasel V, Abraham A, Rössler O (eds) Nostradamus 2014: prediction, modeling and analysis of complex systems. Springer International Publishing, Cham, pp 365–376

    Google Scholar 

  62. Liu Y, Tian Y, Chen M (2017) Research on the prediction of carbon emission based on the chaos theory and neural network. Int J Bioautom 21(4):339–348

    Google Scholar 

  63. Stehlík M, Dusek J, Kiselák J, (2016) Missing chaos in global climate change data interpreting? Ecol Complex 25:53–59. https://doi.org/10.1016/j.ecocom.2015.12.003

    Article  Google Scholar 

  64. Navares R, Aznarte JL (2020) Predicting air quality with deep learning lstm: towards comprehensive models. Ecol Inform 55:101019. https://doi.org/10.1016/j.ecoinf.2019.101019

    Article  Google Scholar 

  65. Izonin I, Greguš ml, M, Tkachenko R, Logoyda M, Mishchuk O, Kynash Y, (2019) Sgd-based wiener polynomial approximation for missing data recovery in air pollution monitoring dataset. In: Rojas I, Joya G, Catala A (eds) Adv Comput Intell. Springer International Publishing, Cham, pp 781–793

    Chapter  Google Scholar 

  66. Wang J, Song G (2018) A deep spatial-temporal ensemble model for air quality prediction. Neurocomputing 314:198–206. https://doi.org/10.1016/j.neucom.2018.06.049

    Article  Google Scholar 

  67. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence. Volume 2, IJCAI’95, pp 1137–1143

  68. AlBadawy EA, Saha A, Mazurowski MA (2018) Deep learning for segmentation of brain tumors: impact of cross-institutional training and testing. Med Phys 45(3):1150–1158. https://doi.org/10.1002/mp.12752

    Article  Google Scholar 

  69. Chui KT, Tsang KF, Chi HR, Ling BWK, Wu CK (2016) An accurate ECG-based transportation safety drowsiness detection scheme. IEEE Trans Ind Inform 12(4):1438–1452. https://doi.org/10.1109/TII.2016.2573259

    Article  Google Scholar 

  70. Bergmeir C, Hyndman RJ, Koo B (2018) A note on the validity of cross-validation for evaluating autoregressive time series prediction. Comput Stat Data Anal 120:70–83. https://doi.org/10.1016/j.csda.2017.11.003

    Article  MathSciNet  MATH  Google Scholar 

  71. Bischl B, Richter J, Bossek J, Horn D, Thomas J, Lang M (2018) mlrMBO: a modular framework for model-based optimization of expensive black-box functions. http://arxiv.org/abs/1703.03373

  72. Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Int Res 11(1):169–198

    MATH  Google Scholar 

  73. Dietterich TG (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–1923

    Article  Google Scholar 

  74. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  75. Lacoste A, Laviolette F, Marchand M (2012) Bayesian comparison of machine learning algorithms on single and multiple datasets. Proc Fifteenth Int Conf Artif Intell Stat 22:665–675

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge support through grants RTI2018-098160-B-I00 and TIN2017-88728-C2 from the Spanish Ministerio de Ciencia, Innovación y Universidades, which include ERDF funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Urda.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urda, D., Veredas, F.J., González-Enrique, J. et al. Deep neural networks architecture driven by problem-specific information. Neural Comput & Applic 33, 9403–9423 (2021). https://doi.org/10.1007/s00521-021-05702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05702-7

Keywords

Navigation