Skip to main content

Advertisement

Log in

Machine learning-data mining integrated approach for premature ventricular contraction prediction

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Cardiac arrhythmias impose a significant burden on the healthcare environment due to the increasing ratio of mortality worldwide. Arrhythmia and abnormal ECG heartbeat are the possible symptoms of severe heart diseases that can lead to death. Premature ventricular contraction (PVC) is a common form of cardiac arrhythmia which begins from the lower chamber of the heart, and frequent occurrence of PVC beat might lead to mortality. ECG signals are the noninvasive and primary tool used to identify the actual life threat related to the heart. Nowadays, in society, the computer-assisted technique reduces doctors' burden to evaluate heart disease and heart arrhythmia automatically. Regardless of well-equipped and well-developed health facilities that are available for monitoring the cardiac condition, the success stories are yet unsatisfactorily due to the complexity of the cardiac disorder. The most challenging part in ECG signal analysis is to extract the accurate features relevant to the arrhythmia for classification due to the inter-patient variation. There are many morphological changes present in the ECG signals. Hence, there is a gap in the usage of appropriate methods for the extraction of features and classification models, which reduce the biased diagnosis of PVC arrhythmia. To predict PVC arrhythmia accurately is a quite challenging task owing to (a) QRS negative (b) long compensatory pause (c) p-wave (d) biased diagnosis of PVC detection due to the small feature set. This study presents a new approach for PVC prediction using derived predictor variables from the electrocardiograph (ECG-MLII) signals: R–R wave interval, previous R–R wave interval, QRS duration, and verification of P-wave whether it is present or absent using threshold technique. We propose the machine learning-data mining MACDM integrated approach using five different models of multiple logistic regression and four classifiers, namely, Random Forest (RF), K-Nearest Neighbor (KNN), Support vector machine (SVM), and Naïve Bayes (NB). The experiment was conducted on the public benchmark MIT-BIH-AR to evaluate the performance of our proposed MACDM technique. The multiple logistic regression models constructed as a function of all independent variables achieved an accuracy of 99.96%, sensitivity 98.9%, specificity 99.20%, PPV 99.25%, and Youden's index parameter 98.24%. Thus, it is proved that this computer-aided method helps our medical practitioners improve the efficiency of their services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitra M, Samanta RK (2013) Cardiac arrhythmia classification using neural networks with selected features. ProcediaTechnol 10:76–84. https://doi.org/10.1016/j.protcy.2013.12.339

    Article  Google Scholar 

  2. Haldar NAH, Khan FA, Ali A, Abbas H (2017) Arrhythmia classification using Mahalanobis distance based improved Fuzzy C-Means clustering for mobile health monitoring systems. Neurocomputing 220:221–235. https://doi.org/10.1016/j.neucom.2016.08.042

    Article  Google Scholar 

  3. Iwasa A, Hwa M, Hassankhani A et al (2005) Abnormal heart rate turbulence predicts the initiation of ventricular arrhythmias. PACE - Pacing ClinElectrophysiol. https://doi.org/10.1111/j.1540-8159.2005.50186.x

    Article  Google Scholar 

  4. Clifford GD, Azuaje F, McSharry PE (2006) Advanced methods and tools for ECG data analysis

  5. Chambrin M-C, Ravaux P, Calvelo-Aros D, Jaborska A, Chopin C, Boniface B (1999) Multicentric study of monitoring alarms in the adult intensive care unit (ICU): a descriptive analysis. Intensive Care Med 25:1360–1366

    Article  Google Scholar 

  6. Inan OT, Giovangrandi L, Kovacs GTA (2006) Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2006.880879

    Article  Google Scholar 

  7. Sayadi O, Shamsollahi MB, Clifford GD (2010) Robust detection of premature ventricular contractions using a wave-based Bayesian framework. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2009.2031243

    Article  Google Scholar 

  8. Rodríguez R, Mexicano A, Bila J et al (2015) Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. J Appl Res Technol. https://doi.org/10.1016/j.jart.2015.06.008

    Article  Google Scholar 

  9. Benitez D, Gaydecki PA, Zaidi A, Fitzpatrick AP (2001) The use of the Hilbert transform in ECG signal analysis. ComputBiol Med. https://doi.org/10.1016/S0010-4825(01)00009-9

    Article  Google Scholar 

  10. De Chazal P, O’Dwyer M, Reilly RB (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2004.827359

    Article  Google Scholar 

  11. Lakshminarayan C, Basil T (2016) Feature Extraction and Automated Classification of Heartbeats by Machine Learning

  12. Llamedo M, Martínez JP (2011) Analysis of a semiautomatic algorithm for ECG heartbeat classification. In: Computing in Cardiology

  13. Llamedo M, Martinez JP (2012) An automatic patient-adapted ECG heartbeat classifier allowing expert assistance. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2012.2202662

    Article  Google Scholar 

  14. Verma A, Dong X (2016) Detection of ventricular fibrillation using random forest classifier. J Biomed SciEng. https://doi.org/10.4236/jbise.2016.95019

    Article  Google Scholar 

  15. Brezulianu A, Geman O, Dan Zbancioc M et al (2019) IoT based heart activity monitoring using inductive sensors. Sensors (Switzerland). https://doi.org/10.3390/s19153284

    Article  Google Scholar 

  16. Acharya UR, Fujita H, Lih OS et al (2017) Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowl Based Syst 132:62–71. https://doi.org/10.1016/j.knosys.2017.06.003

    Article  Google Scholar 

  17. da Luz EJS, Schwartz WR, Cámara-Chávez G, Menotti D (2016) ECG-based heartbeat classification for arrhythmia detection: a survey. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2015.12.008

    Article  Google Scholar 

  18. Teijeiro T, Felix P, Presedo J, Castro D (2018) Heartbeat classification using abstract features from the abductive interpretation of the ECG. IEEE J Biomed Heal Informatics. https://doi.org/10.1109/JBHI.2016.2631247

    Article  Google Scholar 

  19. Park J, Kang K (2014) PcHD: personalized classification of heartbeat types using a decision tree. ComputBiol Med. https://doi.org/10.1016/j.compbiomed.2014.08.013

    Article  Google Scholar 

  20. Ye C, Vijaya Kumar BVK, Tavares Coimbra M (2016) An automatic subject-adaptable heartbeat classifier based on multiview learning. IEEE J Biomed Heal Informatics. https://doi.org/10.1109/JBHI.2015.2468224

    Article  Google Scholar 

  21. Zhang Z, Dong J, Luo X et al (2014) Heartbeat classification using disease-specific feature selection. ComputBiol Med. https://doi.org/10.1016/j.compbiomed.2013.11.019

    Article  Google Scholar 

  22. Acharya UR, Fujita H, Lih OS et al (2017) Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. InfSci (Ny). https://doi.org/10.1016/j.ins.2017.04.012

    Article  Google Scholar 

  23. Oh SL, Ng EYK, Tan RS, Acharya UR (2018) Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. ComputBiol Med 102:278–287. https://doi.org/10.1016/j.compbiomed.2018.06.002

    Article  Google Scholar 

  24. Isin A, Ozdalili S (2017) Cardiac arrhythmia detection using deep learning. ProcediaComputSci 120:268

    Google Scholar 

  25. Yu Hen Hu, Tompkins WJ, Urrusti JL, Afonso VX (1994) Applications of artificial neural networks for ECG signal detection and classification. J Electrocardiol 26:66

    Google Scholar 

  26. Senhadji L, Carrault G, Bellanger JJ, Passariello G (1995) Comparing wavelet transforms for recognizing cardiac patterns. IEEE Eng Med Biol Mag Doi 10(1109/51):376755

    Google Scholar 

  27. Hu YH, Palreddy S, Tompkins WJ (1997) A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans Biomed EngDoi 10(1109/10):623058

    Google Scholar 

  28. Gupta DV, Jangra S (2019) Ecg Signal based arrhythmia detection system using optimized hybrid classifier. Int J InnovTechnolExplorEng 8:2207–2212. https://doi.org/10.35940/ijitee.i7916.078919

    Article  Google Scholar 

  29. Pandey SK, Janghel RR (2019) ECG arrhythmia classification using artificial neural networks. In: Lecture Notes in Networks and Systems

  30. Minami KI, Nakajima H, Toyoshima T (1999) Real-time discrimination of ventricular tachyarrhythmia with fourier-transform neural network. IEEE Trans Biomed EngDoi 10(1109/10):740880

    Google Scholar 

  31. De Chazal P, Reilly RB (2006) A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2006.883802

    Article  Google Scholar 

  32. Oster J, Behar J, Sayadi O et al (2015) Semisupervised ECG ventricular beat classification with novelty detection based on switching kalman filters. IEEE Trans Biomed Eng 62:2125

    Article  Google Scholar 

  33. Talbi ML, Ravier P (2016) Detection of PVC in ECG signals using fractional linear prediction. Biomed Signal Process Control. https://doi.org/10.1016/j.bspc.2015.07.005

    Article  Google Scholar 

  34. Zadeh AE, Khazaee A, Ranaee V (2010) Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2010.04.013

    Article  Google Scholar 

  35. Talbi ML, Charef A (2009) PVC discrimination using the QRS power spectrum and self-organizing maps. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2008.12.009

    Article  Google Scholar 

  36. Cardiology - Bundle Branch Blocks and Ventricular Rhythms—Premature Ventricular Complexes. https://medictests.com/units/premature-ventricular-complexes. Accessed 6 Jan 2021

  37. Liu X, Du H, Wang G et al (2015) Automatic diagnosis of premature ventricular contraction based on Lyapunov exponents and LVQ neural network. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2015.06.010

    Article  Google Scholar 

  38. Zhou FY, Jin LP, Dong J (2017) Premature ventricular contraction detection combining deep neural networks and rules inference. ArtifIntell Med 79:42–51. https://doi.org/10.1016/j.artmed.2017.06.004

    Article  Google Scholar 

  39. Jung Y, Kim H (2017) Detection of PVC by using a wavelet-based statistical ECG monitoring procedure. Biomed Signal Process Control. https://doi.org/10.1016/j.bspc.2017.03.023

    Article  Google Scholar 

  40. Zarei R, He J, Huang G, Zhang Y (2016) Effective and efficient detection of premature ventricular contractions based on variation of principal directions. Digit Signal Process A Rev J. https://doi.org/10.1016/j.dsp.2015.12.002

    Article  Google Scholar 

  41. Chang RCH, Lin CH, Wei MF et al (2014) High-precision real-time premature ventricular contraction (PVC) detection system based on wavelet transform. J Signal Process Syst. https://doi.org/10.1007/s11265-013-0823-6

    Article  Google Scholar 

  42. Chikh MA, Ammar M, Marouf R (2012) A neuro-fuzzy identification of ECG beats. J Med Syst. https://doi.org/10.1007/s10916-010-9554-4

    Article  Google Scholar 

  43. Lim JS (2009) Finding features for real-time premature ventricular contraction detection using a fuzzy neural network system. IEEE Trans Neural Networks. https://doi.org/10.1109/TNN.2008.2012031

    Article  Google Scholar 

  44. Du H, Bai Y, Zhou S, et al (2014) A novel method for diagnosing premature ventricular contraction beat based on chaos theory. In: 2014 11th international conference on fuzzy systems and knowledge discovery, FSKD 2014

  45. Jude Hemanth D, Anitha J, Naaji A et al (2019) A modified deep convolutional neural network for abnormal brain image classification. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2885639

    Article  Google Scholar 

  46. Murat F, Yildirim O, Talo M et al (2020) Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Comput. Biol, Med

    Book  Google Scholar 

  47. Li Y, Pang Y, Wang J, Li X (2018) Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing 314:336–346. https://doi.org/10.1016/j.neucom.2018.06.068

    Article  Google Scholar 

  48. Acharya UR, Oh SL, Hagiwara Y et al (2017) A deep convolutional neural network model to classify heartbeats. ComputBiol Med. https://doi.org/10.1016/j.compbiomed.2017.08.022

    Article  Google Scholar 

  49. Dokur Z, Ölmez T (2020) Heartbeat classification by using a convolutional neural network trained with Walsh functions. Neural ComputAppl 32:12515–12534. https://doi.org/10.1007/s00521-020-04709-w

    Article  Google Scholar 

  50. Wu W, Pirbhulal S, Sangaiah AK et al (2018) Optimization of signal quality over comfortability of textile electrodes for ECG monitoring in fog computing based medical applications. FuturGenerComputSyst. https://doi.org/10.1016/j.future.2018.04.024

    Article  Google Scholar 

  51. Anwar SM, Gul M, Majid M, Alnowami M (2018) Arrhythmia classification of ECG signals using hybrid features. Comput Math Methods Med. https://doi.org/10.1155/2018/1380348

    Article  MATH  Google Scholar 

  52. Cuomo S, De Pietro G, Farina R et al (2016) A revised scheme for real time ECG Signal denoising based on recursive filtering. Biomed Signal Process Control 27:134–144. https://doi.org/10.1016/j.bspc.2016.02.007

    Article  Google Scholar 

  53. Sellami A, Hwang H (2019) A robust deep convolutional neural network with batch-weighted loss for heartbeat classification. Expert SystAppl. https://doi.org/10.1016/j.eswa.2018.12.037

    Article  Google Scholar 

  54. Alarsan FI, Younes M (2019) Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. J Big Data. https://doi.org/10.1186/s40537-019-0244-x

    Article  Google Scholar 

  55. Xie Q, Tu S, Wang G et al (2019) Feature enrichment based convolutional neural network for heartbeat classification from electrocardiogram. IEEE Access 7:153751–153760. https://doi.org/10.1109/ACCESS.2019.2948857

    Article  Google Scholar 

  56. Krasteva V, Jekova I (2007) QRS template matching for recognition of ventricular ectopic beats. Ann Biomed Eng. https://doi.org/10.1007/s10439-007-9368-9

    Article  Google Scholar 

  57. Casas MM, Avitia RL, Gonzalez-Navarro FF et al (2018) Bayesian classification models for premature ventricular contraction detection on ECG traces. J HealthcEng. https://doi.org/10.1155/2018/2694768

    Article  Google Scholar 

  58. Mark, R and Moody G (1988) MIT-BIH arrhythmia database directory. Cambridge Massachusetts Inst Technol

  59. Llamedo M, Martínez JP (2011) Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2010.2068048

    Article  Google Scholar 

  60. ECAR, AAMI (1987) Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms

  61. Park J, Lee S, Jeon M (2009) Atrial fibrillation detection by heart rate variability in Poincare plot. Biomed Eng Online. https://doi.org/10.1186/1475-925X-8-38

    Article  Google Scholar 

  62. Barman T, Ghongade R, Ratnaparkhi A (2016) Rough set based segmentation and classification model for ECG. In: Conference on advances in signal processing, CASP 2016

  63. Kumar SU, Inbarani HH (2017) Neighborhood rough set based ECG signal classification for diagnosis of cardiac diseases. Soft Comput. https://doi.org/10.1007/s00500-016-2080-7

    Article  Google Scholar 

  64. Umer M, Bhatti BA, Tariq MH et al (2014) Electrocardiogram feature extraction and pattern recognition using a novel windowing algorithm. AdvBiosciBiotechnol. https://doi.org/10.4236/abb.2014.511103

    Article  Google Scholar 

  65. Patidar S, Pachori RB, Rajendra Acharya U (2015) Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2015.02.011

    Article  Google Scholar 

  66. Hosmer DW, Lemeshow S (1980) Goodness of fit tests for the multiple logistic regression model. Commun Stat Theory Methods. https://doi.org/10.1080/03610928008827941

    Article  MATH  Google Scholar 

  67. Ho TK (1995) Random decision forests. In: Proceedings of the international conference on document analysis and recognition, ICDAR

  68. Üstün B, Melssen WJ, Buydens LMC (2006) Facilitating the application of support vector regression by using a universal Pearson VII function based kernel. ChemomIntell Lab Syst. https://doi.org/10.1016/j.chemolab.2005.09.003

    Article  Google Scholar 

  69. Fix E, Hodges Jr JL (1952) Discriminatory analysis—nonparametric discrimination: small sample performance. In: Project No. 21-49-004, Report No. 11, Contract No. AF 41(129)-31, USAF School of Aviation, Randolph Field, Texas

  70. Peterson L (2009) K-nearest neighbor. Scholarpedia. https://doi.org/10.4249/scholarpedia.1883

    Article  Google Scholar 

  71. Boser BE, Guyon IM, Vapnik VN (1992) Training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual ACM workshop on computational learning theory

  72. Ruppert D (2004) The elements of statistical learning: data mining, inference, and prediction. J Am Stat Assoc. https://doi.org/10.1198/jasa.2004.s339

    Article  MathSciNet  Google Scholar 

  73. Zhang H (2004) The optimality of Naive Bayes. In: Proceedings of the seventeenth international florida artificial intelligence research society conference, FLAIRS 2004

  74. Seni G, Elder JF (2010) Ensemble methods in data mining: improving accuracy through combining predictions. Synth Lect Data Min KnowlDiscov. https://doi.org/10.2200/s00240ed1v01y200912dmk002

    Article  Google Scholar 

  75. Jenny NZ, Faust O, Yu W (2014) Automated classification of normal and premature ventricular contractions in electrocardiogram signals. J Med Imaging Heal Inform 4:886

    Article  Google Scholar 

  76. Gutiérrez-Gnecchi JA, Morfin-Magaña R, Lorias-Espinoza D et al (2017) DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed Signal Process Control. https://doi.org/10.1016/j.bspc.2016.10.005

    Article  Google Scholar 

  77. Mohammed MA, Abdulkareem KH, Garcia-Zapirain B, Mostafa SA, Maashi MS et al (2021) A comprehensive investigation of machine learning feature extraction and classification methods for automated diagnosis of covid-19 based on x-ray images. Comput Mater Contin 66(3):3289–3310

    Article  Google Scholar 

  78. Elhoseny M, Mohammed MA, Mostafa SA, Abdulkareem KH, Maashi MS et al (2021) A new multi-agent feature wrapper machine learning approach for heart disease diagnosis. Comput Mater Contin 67(1):51–71

    Article  Google Scholar 

  79. Mohammed MA, Abdulkareem KH, Mostafa SA, Ghani MKA, Maashi MS, Garcia-Zapirain B, Oleagordia I, Alhakami H, AL-Dhief FT (2020) Voice pathology detection and classification using convolutional neural network model. ApplSci 10(11):3723

    Google Scholar 

  80. Abdulkareem KH, Mohammed MA, Gunasekaran SS, Al-Mhiqani MN, Mutlag AA, Mostafa SA, Ali NS, Ibrahim DA (2019) A review of Fog computing and machine learning: concepts, applications, challenges, and open issues. IEEE Access 7:153123–153140

    Article  Google Scholar 

  81. AbdGhani MK, Mohammed MA, Arunkumar N, Mostafa SA, Ibrahim DA, Abdullah MK, Jaber MM, Abdulhay E, Ramirez-Gonzalez G, Burhanuddin MA (2020) Decision-level fusion scheme for nasopharyngeal carcinoma identification using machine learning techniques. Neural ComputAppl 32(3):625–638

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers for their valuable comments and Dr. Fawad Ali Khan from the University of Malaya, faculty of computer science and Information Technology, for their support and courage.

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazin Abed Mohammed.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastoi, Qua., Memon, M.S., Lakhan, A. et al. Machine learning-data mining integrated approach for premature ventricular contraction prediction. Neural Comput & Applic 33, 11703–11719 (2021). https://doi.org/10.1007/s00521-021-05820-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05820-2

Keywords

Navigation