Skip to main content
Log in

Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review

  • S.I.: Machine Learning for Big Data Analytics in Smart Healthcare Systems
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The brain–computer interface (BCI) is an emerging technology that has the potential to revolutionize the world, with numerous applications ranging from healthcare to human augmentation. Electroencephalogram (EEG) motor imagery (MI) is among the most common BCI paradigms that have been used extensively in smart healthcare applications such as post-stroke rehabilitation and mobile assistive robots. In recent years, the contribution of deep learning (DL) has had a phenomenal impact on MI-EEG-based BCI. In this work, we systematically review the DL-based research for MI-EEG classification from the past ten years. This article first explains the procedure for selecting the studies and then gives an overview of BCI, EEG, and MI systems. The DL-based techniques applied in MI classification are then analyzed and discussed from four main perspectives: preprocessing, input formulation, deep learning architecture, and performance evaluation. In the discussion section, three major questions about DL-based MI classification are addressed: (1) Is preprocessing required for DL-based techniques? (2) What input formulations are best for DL-based techniques? (3) What are the current trends in DL-based techniques? Moreover, this work summarizes MI-EEG-based applications, extensively explores public MI-EEG datasets, and gives an overall visualization of the performance attained for each dataset based on the reviewed articles. Finally, current challenges and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Alshehri F, Muhammad G (2021) A comprehensive survey of the Internet of Things (IoT) and AI-based smart healthcare. IEEE Access 9:3660–3678

    Google Scholar 

  2. Masud M, Gaba GS, Alqahtani S, Muhammad G, Gupta BB, Kumar P, Ghoneim A (2020) A lightweight and robust secure key establishment protocol for internet of medical things in COVID-19 patients care. IEEE Inter Things J

  3. Muhammad G, Alshehri F, Karray F, El Saddik A., Alsulaiman M, Falk TH (2021). A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf Fusion 76:355–375

    Google Scholar 

  4. Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Elias-Vinas D, Gutierrez-Martinez J (2018) Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients. J Healthc Eng 2018:1–10

    Google Scholar 

  5. López-Larraz E, Sarasola-Sanz A, Irastorza-Landa N, Birbaumer N, Ramos-Murguialday A (2018) Brain-machine interfaces for rehabilitation in stroke: a review. NeuroRehabilitation 43(1):77–97

    Google Scholar 

  6. Al-Quraishi MS, Elamvazuthi I, Daud SA, Parasuraman S, Borboni A (2018) EEG-based control for upper and lower limb exoskeletons and prostheses: a systematic review. Sensors 18(10):3342

    Google Scholar 

  7. Tayeb Z et al (2019) Validating deep neural networks for online decoding of motor imagery movements from EEG signals. Sensors 19(1):210

    MathSciNet  Google Scholar 

  8. Fernández-Rodríguez Á, Velasco-Álvarez F, Ron-Angevin R (2016) Review of real brain-controlled wheelchairs. J Neural Eng 13(6):61001

    Google Scholar 

  9. Tang X, Li W, Li X, Ma W, Dang X (2020) Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network. Expert Syst Appl 149:113285

    Google Scholar 

  10. Li J, Liang J, Zhao Q, Li J, Hong K, Zhang L (2013) Design of assistive wheelchair system directly steered by human thoughts. Int J Neural Syst 23(03):1350013

    Google Scholar 

  11. Cao L, Xia B, Maysam O, Li J, Xie H, Birbaumer N (2017) A synchronous motor imagery based neural physiological paradigm for brain computer interface speller. Front Hum Neurosci 11:274

    Google Scholar 

  12. Das Chakladar D, Chakraborty S (2018) Multi-target way of cursor movement in brain computer interface using unsupervised learning. Biol Inspired Cogn Archit 25:88–100

    Google Scholar 

  13. Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34(4):1443–1449

    Google Scholar 

  14. Jafarifarmand A, Badamchizadeh MA (2019) EEG artifacts handling in a real practical brain–computer interface controlled vehicle. IEEE Trans Neural Syst Rehabil Eng 27(6):1200–1208

    Google Scholar 

  15. Pawar D, Dhage S (2020) Feature extraction methods for electroencephalography based brain-computer interface: a review. IAENG Int J Comput Sci 47(3)

  16. Djamal EC, Abdullah MY, Renaldi F (2017) Brain computer interface game controlling using fast fourier transform and learning vector quantization. J Telecommun Electron Comput Eng 9(2–5):71–74

    Google Scholar 

  17. Kousarrizi MRN, Ghanbari AA, Teshnehlab M, Shorehdeli MA, Gharaviri A (2009) Feature extraction and classification of EEG signals using Wavelet transform, SVM and artificial neural networks for brain computer interfaces. In: 2009 international joint conference on bioinformatics, systems biology and intelligent computing, pp 352–355

  18. Wang L, Lan Z, Wang Q, Yang R, Li H (2019) ELM_Kernel and Wavelet packet decomposition based EEG classification algorithm. Autom Control Comput Sci 53(5):452–460

    Google Scholar 

  19. Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446

    Google Scholar 

  20. Zhang L, Wen D, Li C, Zhu R (2020) Ensemble classifier based on optimized extreme learning machine for motor imagery classification. J Neural Eng 17(2):26004

    Google Scholar 

  21. Wang K, Zhai DH, Xia Y (2019) Motor imagination EEG recognition algorithm based on DWT, CSP and extreme learning machine. In: 2019 Chinese control conference (CCC), pp 4590–4595

  22. Jin Z, Zhou G, Gao D, Zhang Y (2018) EEG classification using sparse Bayesian extreme learning machine for brain–computer interface. Neural Comput Appl 32:1–9

    Google Scholar 

  23. Ang KK, Chin ZY, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 6:39

    Google Scholar 

  24. Chen CY, Wu CW, Lin CT, Chen SA (2014) A novel classification method for motor imagery based on brain-computer interface. In: 2014 International joint conference on neural networks (IJCNN), pp 4099–4102

  25. Arvaneh M, Guan C, Ang KK, Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58(6):1865–1873

    Google Scholar 

  26. Samek W, Vidaurre C, Müller K-R, Kawanabe M (2012) Stationary common spatial patterns for brain–computer interfacing. J Neural Eng 9(2):26013

    Google Scholar 

  27. Samek W, Kawanabe M, Müller K-R (2013) Divergence-based framework for common spatial patterns algorithms. IEEE Rev Biomed Eng 7:50–72

    Google Scholar 

  28. Wu W, Chen Z, Gao X, Li Y, Brown EN, Gao S (2014) Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans Pattern Anal Mach Intell 37(3):639–653

    Google Scholar 

  29. Rashid M et al (2020) Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front Neurorobot 14:25

    Google Scholar 

  30. Zhang X, Yao L, Wang X, Monaghan JJM, Mcalpine D, Zhang Y (2020) A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J Neural Eng 18:031002

    Google Scholar 

  31. Altaheri H, Alsulaiman M, Muhammad G (2019) Date Fruit classification for robotic harvesting in a natural environment using deep learning. IEEE Access 7(1):117115–117133

    Google Scholar 

  32. Qamhan M, Altaheri H, Meftah AH, Muhammad G, Alotaibi YA (2021) Digital audio forensics: microphone and environment classification using deep learning. IEEE Access 9:62719–62733

    Google Scholar 

  33. Muhammad G, Hossain MS, Kumar N (2020) EEG-based pathology detection for home health monitoring. IEEE J Sel Areas Commun 39(2):603–610

    Google Scholar 

  34. Muhammad G, Alhamid MF, Long X (2019) Computing and processing on the edge: Smart pathology detection for connected healthcare. IEEE Netw 33(6):44–49

    Google Scholar 

  35. Muhammad G, Rahman SKMM, Alelaiwi A, Alamri A (2017) Smart health solution integrating IoT and cloud: a case study of voice pathology monitoring. IEEE Commun Mag 55(1):69–73

    Google Scholar 

  36. Lotte F et al (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 15(3):31005

    Google Scholar 

  37. Craik A, He Y, Contreras-Vidal JL (2019) Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng 16(3):31001

    Google Scholar 

  38. Padfield N, Zabalza J, Zhao H, Masero V, Ren J (2019) EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors 19(6):1423

    Google Scholar 

  39. Aggarwal S, Chugh N (2019) Signal processing techniques for motor imagery brain computer interface: a review. Array 1:100003

    Google Scholar 

  40. Wan Z, Yang R, Huang M, Zeng N, Liu X (2020) A review on transfer learning in EEG signal analysis. Neurocomputing 421:1–14

    Google Scholar 

  41. Lashgari E, Liang D, Maoz U (2020) Data augmentation for deep-learning-based electroencephalography. J Neurosci Methods 2020:108885

    Google Scholar 

  42. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    Google Scholar 

  43. Millán JDR et al (2010) Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci 4:161

    Google Scholar 

  44. Greenfield LJ, Geyer JD, Carney PR (2012) Reading EEGs: a practical approach. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  45. Ball T, Kern M, Mutschler I, Aertsen A, Schulze-Bonhage A (2009) Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage 46(3):708–716

    Google Scholar 

  46. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ, Mack S (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  47. CHB-MIT Scalp EEG Database. Available: https://archive.physionet.org/physiobank/charts/chbmit.png. (Accessed 12 Apr 2020)

  48. Lacey S, Lawson R (2013) Multisensory imagery. Springer Science and Business Media, Berlin

    Google Scholar 

  49. Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I (2018) Brain–computer interface spellers: a review. Brain Sci 8(4):57

    Google Scholar 

  50. Lee MH et al (2019) EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. Gigascience 8(5):giz002

    Google Scholar 

  51. Hassanpour A, Moradikia M, Adeli H, Khayami SR, Shamsinejadbabaki P (2019) A novel end-to-end deep learning scheme for classifying multi-class motor imagery electroencephalography signals. Expert Syst 36(6):e12494

    Google Scholar 

  52. Pfurtscheller G, Brunner C, Schlögl A, Da Silva FHL (2006) Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1):153–159

    Google Scholar 

  53. Wang Y, Nakanishi M, Zhang D (2019) EEG-based brain-computer interfaces, in neural interface: frontiers and applications. Springer, Berlin, pp 41–65

    Google Scholar 

  54. Zhao X, Zhang H, Zhu G, You F, Kuang S, Sun L (2019) A multi-branch 3D convolutional neural network for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 27(10):2164–2177

    Google Scholar 

  55. Avilov O, Rimbert S, Popov A, Bougrain L (2021) Optimizing motor intention detection with deep learning: towards management of intraoperative awareness. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2021.3064794

    Article  Google Scholar 

  56. Zhu K, Wang S, Zheng D, Dai M (2019) Study on the effect of different electrode channel combinations of motor imagery EEG signals on classification accuracy. J Eng 2019(23):8641–8645

    Google Scholar 

  57. Lun X, Yu Z, Chen T, Wang F, Hou Y (2020) A simplified CNN classification method for MI-EEG via the electrode pairs signals. Front Hum Neurosci 14. https://doi.org/10.3389/fnhum.2020.00338

  58. Liu T, Yang D (2021) A densely connected multi-branch 3D convolutional neural network for motor imagery EEG decoding. Brain Sci 11(2):197

    Google Scholar 

  59. Li Y, Yang H, Li J, Chen D, Du M (2020) EEG-based intention recognition with deep recurrent-convolution neural network: performance and channel selection by Grad-CAM. Neurocomputing 415:225–233

    Google Scholar 

  60. Yang J, Ma Z, Wang J, Fu Y (2020) A novel deep learning scheme for motor imagery EEG decoding based on spatial representation fusion. IEEE Access 8:202100–202110

    Google Scholar 

  61. Chu Y, Zhao X, Zou Y, Xu W, Han J, Zhao Y (2018) A decoding scheme for incomplete motor imagery EEG with deep belief network. Front Neurosci 12:680

    Google Scholar 

  62. Jeong J-H, Lee B-H, Lee D-H, Yun Y-D, Lee S-W (2020) EEG classification of forearm movement imagery using a hierarchical flow convolutional neural network. IEEE Access 8:66941–66950

    Google Scholar 

  63. Yang J, Yao S, Wang J (2018) Deep fusion feature learning network for MI-EEG classification. IEEE Access 6:79050–79059

    Google Scholar 

  64. Fahimi F, Dosen S, Ang KK, Mrachacz-Kersting N, Guan C (2020) Generative adversarial networks-based data augmentation for brain-computer interface. IEEE Trans Neural Netw Learn Syst 2020:1–13

    Google Scholar 

  65. Xu B et al (2018) Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification. IEEE Access 7:6084–6093

    Google Scholar 

  66. Ma X, Qiu S, Wei W, Wang S, He H (2019) Deep channel-correlation network for motor imagery decoding from the same limb. IEEE Trans Neural Syst Rehabil Eng 28(1):297–306

    Google Scholar 

  67. Alwasiti H, Yusoff MZ, Raza K (2020) Motor imagery classification for brain computer interface using deep metric learning. IEEE Access 8:109949–109963

    Google Scholar 

  68. Alazrai R, Abuhijleh M, Alwanni H, Daoud MI (2019) A deep learning framework for decoding motor imagery tasks of the same hand using EEG signals. IEEE Access 7:109612–109627

    Google Scholar 

  69. Gómez-Herrero G, et al. (2006) Automatic removal of ocular artifacts in the EEG without an EOG reference channel. In: Proceedings of the 7th nordic signal processing symposium-NORSIG 2006, pp 130–133

  70. Luo T, Chao F (2018) Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC Bioinform 19(1):344

    Google Scholar 

  71. Olivas-Padilla BE, Chacon-Murguia MI (2019) Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Appl Soft Comput 75:461–472

    Google Scholar 

  72. Sakhavi S, Guan C, Yan S (2018) Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neural Networks Learn Syst 29(11):5619–5629

    MathSciNet  Google Scholar 

  73. Kwon OY, Lee MH, Guan C, Lee SW (2019) Subject-independent brain–computer interfaces based on deep convolutional neural networks. IEEE Trans Neural Networks Learn Syst 31(10):3839–3852

    Google Scholar 

  74. She Q, Hu B, Luo Z, Nguyen T, Zhang Y (2018) A hierarchical semi-supervised extreme learning machine method for EEG recognition. Med Biol Eng Comput 57(1):147–157

    Google Scholar 

  75. Taheri S, Ezoji M, Sakhaei SM (2020) Convolutional neural network based features for motor imagery EEG signals classification in brain–computer interface system. SN Appl Sci 2(4):1–12

    Google Scholar 

  76. Ma X, Wang D, Liu D, Yang J (2020) DWT and CNN based multi-class motor imagery electroencephalographic signal recognition. J Neural Eng 17(1):16073

    Google Scholar 

  77. Lu N, Li T, Ren X, Miao H (2016) A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Trans neural Syst Rehabil Eng 25(6):566–576

    Google Scholar 

  78. Xu J, Zheng H, Wang J, Li D, Fang X (2020) Recognition of EEG signal motor imagery intention based on deep multi-view feature learning. Sensors 20(12):3496

    Google Scholar 

  79. Huang W, Xue Y, Hu L, Liuli H (2020) S-EEGNet: electroencephalogram signal classification based on a separable convolution neural network with bilinear interpolation. IEEE Access 8:131636–131646

    Google Scholar 

  80. Wang P, Jiang A, Liu X, Shang J, Zhang L (2018) LSTM-based EEG classification in motor imagery tasks. IEEE Trans Neural Syst Rehabil Eng 26(11):2086–2095

    Google Scholar 

  81. Bang JS, Lee MH, Fazli S, Guan C, Lee SW (2021) Spatio-spectral feature representation for motor imagery classification using convolutional neural networks. IEEE Trans Neural Networks Learn Syst 2021:1–12

    Google Scholar 

  82. Xue J et al (2020) A multifrequency brain network-based deep learning framework for motor imagery decoding. Neural Plast 2020:1–11

    Google Scholar 

  83. Zhao X, Zhao J, Liu C, Cai W (2020) Deep neural network with joint distribution matching for cross-subject motor imagery brain-computer interfaces. Biomed Res Int 2020:1–15

    Google Scholar 

  84. Kumar S, Sharma A, Tsunoda T (2019) Brain wave classification using long short-term memory network based OPTICAL predictor. Sci Rep 9(1):1–13

    Google Scholar 

  85. Kumar S, Sharma R, Sharma A (2021) OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals. PeerJ Comput Sci 7:e375

    Google Scholar 

  86. Cheng L, Li D, Yu G, Zhang Z, Li X, Yu S (2020) A motor imagery EEG feature extraction method based on energy principal component analysis and deep belief networks. IEEE Access 8:21453–21472

    Google Scholar 

  87. Zhang R, Zong Q, Dou L, Zhao X (2019) A novel hybrid deep learning scheme for four-class motor imagery classification. J Neural Eng 16(6):66004

    Google Scholar 

  88. Zhang R, Zong Q, Dou L, Zhao X, Tang Y, Li Z (2021) Hybrid deep neural network using transfer learning for EEG motor imagery decoding. Biomed Signal Process Control 63:102144

    Google Scholar 

  89. Uktveris T, Jusas V (2017) Application of convolutional neural networks to four-class motor imagery classification problem. Inf Technol Control 46(2):260–273

    Google Scholar 

  90. Wang Z, Cao L, Zhang Z, Gong X, Sun Y, Wang H (2018) Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition. Concurr Comput Pract Exp 30(23):e4413

    Google Scholar 

  91. Zhang K et al (2020) Data augmentation for motor imagery signal classification based on a hybrid neural network. Sensors 20(16):4485

    Google Scholar 

  92. Shajil N, Mohan S, Srinivasan P, Arivudaiyanambi J, Murrugesan AA (2020) Multiclass classification of spatially filtered motor imagery EEG signals using convolutional neural network for BCI based applications. J Med Biol Eng 40(5):663–672

    Google Scholar 

  93. Rong Y, Wu X, Zhang Y (2020) Classification of motor imagery electroencephalography signals using continuous small convolutional neural network. Int J Imaging Syst Technol 30(3):653–659

    Google Scholar 

  94. Roy S, Chowdhury A, McCreadie K, Prasad G (2020) Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces. Front Neurosci 14. https://doi.org/10.3389/fnins.2020.00918

  95. Miao M, Hu W, Yin H, Zhang K (2020) Spatial-frequency feature learning and classification of motor imagery EEG based on deep convolution neural network. Comput Math Methods Med 2020:1–13

    Google Scholar 

  96. Li F, He F, Wang F, Zhang D, Xia Y, Li X (2020) A novel simplified convolutional neural network classification algorithm of motor imagery EEG signals based on deep learning. Appl Sci 10(5):1605

    Google Scholar 

  97. Kant P, Laskar SH, Hazarika J, Mahamune R (2020) CWT based transfer learning for motor imagery classification for brain computer interfaces. J Neurosci Methods 345:108886

    Google Scholar 

  98. Tabar YR, Halici U (2016) A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng 14(1):16003

    Google Scholar 

  99. Dai M, Zheng D, Na R, Wang S, Zhang S (2019) EEG classification of motor imagery using a novel deep learning framework. Sensors 19(3):551

    Google Scholar 

  100. Zhang D, Chen K, Jian D, Yao L (2020) Motor imagery classification via temporal attention cues of graph embedded EEG signals. IEEE J Biomed Heal Inform 24(9):2570–2579

    Google Scholar 

  101. Leeb R, Brunner C, Müller-Putz G, Schlögl A, Pfurtscheller G (2008) BCI Competition 2008–Graz data set B. Inst Knowl Discov Graz Univ Technol 16:1–6

    Google Scholar 

  102. Blankertz B et al (2004) The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng 51(6):1044–1051

    Google Scholar 

  103. Deng X, Zhang B, Yu N, Liu K, Sun K (2021) Advanced TSGL-EEGNet for motor imagery EEG-based brain-computer interfaces. IEEE Access 9:25118–25130

    Google Scholar 

  104. Fan CC, Yang H, Hou ZG, Ni ZL, Chen S, Fang Z (2021) Bilinear neural network with 3-D attention for brain decoding of motor imagery movements from the human EEG. Cogn Neurodyn 15(1):181–189

    Google Scholar 

  105. Roots K, Muhammad Y, Muhammad N (2020) Fusion convolutional neural network for cross-subject EEG motor imagery classification. Computers 9(3):72

    Google Scholar 

  106. Li D, Xu J, Wang J, Fang X, Ying J (2020) A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding. IEEE Trans Neural Syst Rehabil Eng 28:2615–2626

    Google Scholar 

  107. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng 15(5):56013

    Google Scholar 

  108. Amin SU, Alsulaiman M, Muhammad G, Bencherif MA, Hossain MS (2019) Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification. IEEE Access 7:18940–18950

    Google Scholar 

  109. Dose H, Møller JS, Iversen HK, Puthusserypady S (2018) An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Syst Appl 114:532–542

    Google Scholar 

  110. Tang Z, Li C, Sun S (2017) Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik (Stuttg) 130:11–18

    Google Scholar 

  111. Dai G, Zhou J, Huang J, Wang N (2020) HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification. J Neural Eng 17(1):16025

    Google Scholar 

  112. Lee B-H, Jeong J-H, Lee S-W (2020) SessionNet: feature similarity-based weighted ensemble learning for motor imagery classification. IEEE Access 8:134524–134535

    Google Scholar 

  113. Wu H et al (2019) A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification. Front Neurosci 13:1275

    Google Scholar 

  114. Zhang C, Kim Y-K, Eskandarian A (2021) EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification. J Neural Eng 18(4):46014

    Google Scholar 

  115. Amin SU, Alsulaiman M, Muhammad G, Mekhtiche MA, Hossain MS (2019) Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Futur Gener Comput Syst 101:542–554

    Google Scholar 

  116. Xu M et al (2020) Learning EEG topographical representation for classification via convolutional neural network. Pattern Recognit 105:107390

    Google Scholar 

  117. Liao JJ, Luo JJ, Yang T, So RQY, Chua MCH (2020) Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network. Brain Computer Interfaces 7(3–4):47–56

    Google Scholar 

  118. Li M-A, Han J-F, Duan L-J (2019) A novel MI-EEG imaging with the location information of electrodes. IEEE Access 8:3197–3211

    Google Scholar 

  119. Collazos-Huertas DF, Álvarez-Meza AM, Acosta-Medina CD, Castaño-Duque GA, Castellanos-Dominguez G (2020) CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification. Brain Inform 7(1):1–13

    Google Scholar 

  120. Hou Y, Zhou L, Jia S, Lun X (2020) A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN. J Neural Eng 17(1):16048

    Google Scholar 

  121. Liu X, Shen Y, Liu J, Yang J, Xiong P, Lin F (2020) Parallel spatial–temporal self-attention CNN-based motor imagery classification for BCI. Front Neurosci 14. https://doi.org/10.3389/fnins.2020.587520

  122. Amin SU, Altaheri H, Muhammad G, Alsulaiman M, Abdul W (2021) Attention based inception model for robust EEG motor imagery classification. In: 2021 IEEE international instrumentation and measurement technology conference (I2MTC), pp 1–6. https://doi.org/10.1109/I2MTC50364.2021.9460090

  123. Zhu X, Li P, Li C, Yao D, Zhang R, Xu P (2019) Separated channel convolutional neural network to realize the training free motor imagery BCI systems. Biomed Signal Process Control 49:396–403

    Google Scholar 

  124. Musallam YK et al (2021) Electroencephalography-based motor imagery classification using temporal convolutional network fusion. Biomed Signal Process Control 69:102826

    Google Scholar 

  125. Riyad M, Khalil M, Adib A (2021) MI-EEGNET: A novel convolutional neural network for motor imagery classification. J Neurosci Methods 353:109037

    Google Scholar 

  126. Li D, Wang J, Xu J, Fang X (2019) Densely feature fusion based on convolutional neural networks for motor imagery EEG classification. IEEE Access 7:132720–132730

    Google Scholar 

  127. Ha K-W, Jeong J-W (2021) Temporal pyramid pooling for decoding motor-imagery EEG signals. IEEE Access 9:3112–3125

    Google Scholar 

  128. Zhang K, Robinson N, Lee S-W, Guan C (2021) Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network. Neural Netw 136:1–10

    Google Scholar 

  129. Zhao H, Zheng Q, Ma K, Li H, Zheng Y (2020) Deep representation-based domain adaptation for nonstationary EEG classification. IEEE Trans Neural Networks Learn Syst 32:535–545

    Google Scholar 

  130. Xu G et al (2019) A deep transfer convolutional neural network framework for EEG signal classification. IEEE Access 7:112767–112776

    Google Scholar 

  131. Brunner C, Leeb R, Müller-Putz G, Schlögl A, Pfurtscheller G (2008) BCI Competition 2008–Graz data set A. Inst Knowl Discov Graz Univ Technol 16:1–6

    Google Scholar 

  132. Cho H, Ahn M, Ahn S, Kwon M, Jun SC (2017) EEG datasets for motor imagery brain–computer interface. Gigascience 6(7):gix034

    Google Scholar 

  133. Blankertz B, Dornhege G, Krauledat M, Müller K-R, Curio G (2007) The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37(2):539–550

    Google Scholar 

  134. Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint, http://arxiv.org/abs/1312.6114

  135. Li Y, Zhang X-R, Zhang B, Lei M-Y, Cui W-G, Guo Y-Z (2019) A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding. IEEE Trans Neural Syst Rehabil Eng 27(6):1170–1180

    Google Scholar 

  136. Blankertz B et al (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans neural Syst Rehabil Eng 14(2):153–159

    Google Scholar 

  137. Wang L, Huang W, Yang Z, Zhang C (2020) Temporal-spatial-frequency depth extraction of brain-computer interface based on mental tasks. Biomed Signal Process Control 58:101845

    Google Scholar 

  138. Freer D, Yang G-Z (2020) Data augmentation for self-paced motor imagery classification with C-LSTM. J Neural Eng 17(1):16041

    Google Scholar 

  139. Goldberger AL et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220

    Google Scholar 

  140. Xiaoling L (2020) Motor imagery-based EEG signals classification by combining temporal and spatial deep characteristics. Int J Intell Comput Cybern 13:437–453

    Google Scholar 

  141. Zhang K et al (2020) Instance transfer subject-dependent strategy for motor imagery signal classification using deep convolutional neural networks. Comput Math Methods Med 2020:1–10

    Google Scholar 

  142. Ofner P, Schwarz A, Pereira J, Müller-Putz GR (2017) Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLoS ONE 12(8):e0182578

    Google Scholar 

  143. Chen J, Yu Z, Gu Z, Li Y (2020) Deep temporal-spatial feature learning for motor imagery-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 28(11):2356–2366

    Google Scholar 

  144. Steyrl D, Scherer R, Förstner O, Müller-Putz GR (2014) Motor imagery brain-computer interfaces: random forests vs regularized LDA-non-linear beats linear. In: Proceedings of the 6th international brain-computer interface conference, pp 241–244

  145. Ma X, Qiu S, He H (2020) Multi-channel EEG recording during motor imagery of different joints from the same limb. Sci Data 7(1):1–9

    Google Scholar 

  146. Lee HK, Choi Y-S (2019) Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface. Entropy 21(12):1199

    Google Scholar 

  147. Ortiz-Echeverri CJ, Salazar-Colores S, Rodríguez-Reséndiz J, Gómez-Loenzo RA (2019) A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network. Sensors 19(20):4541

    Google Scholar 

  148. Chaudhary S, Taran S, Bajaj V, Sengur A (2019) Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J 19(12):4494–4500

    Google Scholar 

  149. Tang X-L, Ma W-C, Kong D-S, Li W (2019) Semisupervised deep stacking network with adaptive learning rate strategy for motor imagery EEG recognition. Neural Comput 31(5):919–942

    MathSciNet  MATH  Google Scholar 

  150. Zhang Z et al (2019) A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access 7:15945–15954

    Google Scholar 

  151. Tang X, Zhang N, Zhou J, Liu Q (2017) Hidden-layer visible deep stacking network optimized by PSO for motor imagery EEG recognition. Neurocomputing 234:1–10

    Google Scholar 

  152. Deng L, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, pp 248–255

  153. Altaheri H, Alsulaiman M, Muhammad G, Amin SU, Bencherif M, Mekhtiche M (2019) Date fruit dataset for intelligent harvesting. Data Br 26:104514

    Google Scholar 

  154. Alsulaiman M, Muhammad G, Bencherif MA, Mahmood A, Ali Z (2013) KSU rich Arabic speech database. Information 16(6B):4231–4253

    Google Scholar 

  155. Graz University of Technology (2021) Data sets-BNCI Horizon 2020. Available: http://bnci-horizon-2020.eu/database/data-sets. Accessed 05 Feb 2021

  156. Lotte F (2021) Fabien Lotte’s professional homepage-links. Available: https://sites.google.com/site/fabienlotte/bci-community/links?authuser=0#h.p_ID_172. Accessed 05 Feb 2021

  157. Scherer R et al (2015) Individually adapted imagery improves brain-computer interface performance in end-users with disability. PLoS ONE 10(5):e0123727

    Google Scholar 

  158. Kaya M, Binli MK, Ozbay E, Yanar H, Mishchenko Y (2018) A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci Data 5:180211

    Google Scholar 

  159. Brodu N, Lotte F, Lécuyer A (2012) Exploring two novel features for EEG-based brain–computer interfaces: multifractal cumulants and predictive complexity. Neurocomputing 79:87–94

    Google Scholar 

  160. Ramos-Murguialday A et al (2013) Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol 74(1):100–108

    Google Scholar 

  161. Zhang X, Yao L, Sheng QZ, Kanhere SS, Gu T, Zhang D (2018) Converting your thoughts to texts: enabling brain typing via deep feature learning of EEG signals. In: 2018 IEEE international conference on pervasive computing and communications (PerCom), pp 1–10

  162. Van Erp J, Lotte F, Tangermann M (2012) Brain-computer interfaces: beyond medical applications. Computer (Long Beach Calif) 45(4):26–34

    Google Scholar 

  163. Yuste R et al (2017) Four ethical priorities for neurotechnologies and AI. Nat News 551(7679):159

    Google Scholar 

  164. LaFleur K, Cassady K, Doud A, Shades K, Rogin E, He B (2013) Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J Neural Eng 10(4):46003

    Google Scholar 

  165. Yu Y et al (2016) Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface. Comput Biol Med 77:148–155

    Google Scholar 

  166. Zhang X, Yao L, Huang C, Sheng QZ, Wang X (2017) Intent recognition in smart living through deep recurrent neural networks. In: International conference on neural information processing, pp 748–758

  167. Li T, Zhang J, Xue T, Wang B (2017) Development of a novel motor imagery control technique and application in a gaming environment. Comput Intell Neurosci 2017:1–16

    Google Scholar 

  168. Kreilinger A, Hiebel H, Müller-Putz GR (2015) Single versus multiple events error potential detection in a BCI-controlled car game with continuous and discrete feedback. IEEE Trans Biomed Eng 63(3):519–529

    Google Scholar 

  169. Zhang X, Yao L, Kanhere SS, Liu Y, Gu T, Chen K (2018) Mindid: Person identification from brain waves through attention-based recurrent neural network. Proc ACM Interactive Mobile Wearable Ubiquitous Technol 2(3):1–23

    Google Scholar 

  170. Zhang X, Yao L, Huang C, Gu T, Yang Z, Liu Y (2017) DeepKey: an EEG and gait based dual-authentication system. arXiv Preprint, http://arxiv.org/abs/1706.01606

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (DRI-KSU-1354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Muhammad.

Ethics declarations

Conflict of interest

The authors declare that they do not have any type of conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaheri, H., Muhammad, G., Alsulaiman, M. et al. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review. Neural Comput & Applic 35, 14681–14722 (2023). https://doi.org/10.1007/s00521-021-06352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06352-5

Keywords

Navigation