Skip to main content

Advertisement

Log in

Moser–Trudinger inequalities of vector bundle over a compact Riemannian manifold of dimension 2

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let (M,g) be a two-dimensional compact Riemannian manifold. In this paper, we use the method of blowing up analysis to prove several Moser–Trudinger type inequalities for vector bundle over (M,g). We also derive an upper bound of such inequalities under the assumption that blowing up occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Druet O. (2004) Blow up analysis in dimension 2 and a sharp form of Trudinger Moser inequality. Commun. PDE 29(1–2): 295–322

    Article  MathSciNet  MATH  Google Scholar 

  2. Adimurthi, Struwe M. (2000) Global compactness properties of semilinear elliptic equations with critical exponential growth. J. Funct. Anal. 175(1): 125–167

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin T. (1998) Some Nonlinear Problems in Riemann Geometry. Springer, Berlin Heidelberg Germany

    Google Scholar 

  4. Carleson L., Chang A. (1986) On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127

    MathSciNet  MATH  Google Scholar 

  5. Chang A. The Moser–Trudinger inequality and applications to some problems in conformal geometry. Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), 65–125, IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI (1996)

  6. Chang A., Yang P. (1988) Conformal deformation of metrics on S 2. J. Differ. Geometry 27, 259–296

    MathSciNet  MATH  Google Scholar 

  7. Chen W., Li C. (1991) Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622

    Article  MathSciNet  MATH  Google Scholar 

  8. Cherrien (1979) Une inégalité de Sobolev sur les variétés Riemanniennes. Bull. Sci. Math. 103, 353–374

    MathSciNet  Google Scholar 

  9. Ding W., Jost J., Li J., Wang G. (1997) The differential equation  − Δu = 8π − 8π he u on a compact Riemann Surface. Asian J. Math. 1, 230–248

    MathSciNet  MATH  Google Scholar 

  10. Ding W., Jost J., Li J., Wang G. (1999) Multiplicity results for the two-vortex Chern-Simons Higgs model on the two sphere. Commun. Math. Helv. 74, 118–142

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding W., Jost J., Li J., Wang G. (1999) Existence results for mean field equations. Ann. Inst. Henri Poincaré, Analyse non linéaire 16, 653–666

    Article  MathSciNet  MATH  Google Scholar 

  12. Fontana L. (1993) Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Commun. Math. Helv. 68, 415–454

    MathSciNet  MATH  Google Scholar 

  13. Jackiw R., Weinberg E. (1990) Self-dual Chern-Simons vortices. Phys. Rev. Lett. 64, 2234–2237

    Article  MathSciNet  MATH  Google Scholar 

  14. Li Y. (2001) Moser–Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14, 163–192

    MATH  Google Scholar 

  15. Li Y., Liu P. (2005) A Moser–Trudinger inequality on the boundary of a compact Riemann surface. Math. Z. 250, 363–386

    Article  MathSciNet  MATH  Google Scholar 

  16. Li Y., Yang Y.: Extremal function for Adams–Fontana inequality in 4-manifold (in preparation)

  17. Lions P.L. (1985) The concentration-compactness principle in the calculus of variation, the limit case, part I. Rev. Mat. Iberoamericana 1, 145–201

    MathSciNet  MATH  Google Scholar 

  18. Moser J. (1971) A sharp form of an inequality by N. Trudinger. Ind. Univ. Math. J. 20, 1077–1091

    Article  Google Scholar 

  19. Struwe M. (1988) Critical points of embedding of H 1,n 0 into Orlicz space. Ann. Inst. Henri Poincare 5, 425–464

    MathSciNet  MATH  Google Scholar 

  20. Struwe M. (2000) Positive solution of critical semilinear elliptic equations on non-contractible planar domain. J. Eur. Math. Soc. 2, 329–388

    Article  MathSciNet  MATH  Google Scholar 

  21. Trudinger N.S. (1967) On embedding into Orlicz space and some applications. J. Math. Mech. 17, 473–484

    MathSciNet  MATH  Google Scholar 

  22. Yang Y. (2005) A weighted form of Moser–Trudinger inequality on Riemannian surface. Nonlinear Anal. 65, 647–659

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyan Yang.

Additional information

The research of the second author was partially supported by NSFC grant and the Foundation of Shanghai for Priority Academic Discipline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, P. & Yang, Y. Moser–Trudinger inequalities of vector bundle over a compact Riemannian manifold of dimension 2. Calc. Var. 28, 59–83 (2007). https://doi.org/10.1007/s00526-006-0031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0031-3

Keywords

Mathematics Subject Classification (2000)

Navigation