Skip to main content

Advertisement

Log in

Abstract

We prove that for a sequence of Dirac-harmonic maps from a compact Riemannian surface to a n dimensional compact Riemannian manifold N with uniformly bounded energy, the energy identities hold during the blow-up process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär C., Schmutz P. (1992). Harmonic spinors on Riemann surfaces. Ann. Glob. Anal. Geom. 10:263–273

    Article  Google Scholar 

  2. Begehr H.G.W. (1994). Complex analytic methods for partial differential equations. World Scientific, Singapore

    MATH  Google Scholar 

  3. Chen, Q., Jost, J., Li, J.Y., Wang, G.F.: Dirac-harmonic maps (Preprint 2004, available at http://www. mis.mpg.de/preprints/2004/prepr2004_83.html)

  4. Chen Q., Jost J., Li J.Y., Wang G.F. (2005). Regularity theorems and energy identities for Dirac-harmonic maps. Math. Zeit. 251:61–84

    Article  MathSciNet  Google Scholar 

  5. Deligne, P. et al. (eds): Quantum fields and strings: a course for mathematicians, vol. I, AMS and IAS (1999)

  6. Ding W.Y., Tian G. (1996). Energy identity for a class of approximate harmonic maps from surfaces. Comm. Anal. Geom. 3:543–554

    MathSciNet  Google Scholar 

  7. Eells J., Lemaire L. (1978). A report on harmonic maps. Bull. Lond. Math. Soc. 10(1):1–68

    MathSciNet  Google Scholar 

  8. Hitchin N. (1974). Harmonic spinors. Adv. Math. 14:1–55

    Article  MathSciNet  Google Scholar 

  9. Jost J. (2002). Riemannian Geometry and geometric analysis, 3rd edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  10. Jost J. (1991). Two-dimensional geometric variational problems. Wiley-Interscience, Chichester

    MATH  Google Scholar 

  11. Lawson H., Michelsohn M.L. (1989). Spin geometry. Princeton University Press, Princeton

    MATH  Google Scholar 

  12. Lemaire L. (1978). Applications harmoniques de surfaces riemanniennes. J. Diff. Geom. 13:51–78

    MathSciNet  Google Scholar 

  13. McDuff D., Salamon D. (1994). J-holomorphic curves and quantum cohomology. AMS Providence, Rhode Island

    MATH  Google Scholar 

  14. Parker T.H. (1996). Bubble tree convergence for harmonic maps. J. Diff. Geom. 44:595–633

    Google Scholar 

  15. Parker T.H., Wolfson J.G. (1996). Pseudo-holomorphic maps and bubble trees. J. Geom. Anal. 3:63–98

    MathSciNet  Google Scholar 

  16. Sacks J., Uhlenbeck K. (1981). The existence of minimal immersions of 2-spheres. Ann. Math. 113(1):1–24

    Article  MathSciNet  Google Scholar 

  17. Xin Y.L. (1996). Geometry of harmonic maps. Birkhäuser, Boston Basel Berlin

    MATH  Google Scholar 

  18. Ye R.G. (1994). Gromov’s compactness theorem for pseudo holomorphic curves. Trans. Am. Math. Soc. 342:671–694

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L. Energy Identities for Dirac-harmonic Maps. Calc. Var. 28, 121–138 (2007). https://doi.org/10.1007/s00526-006-0035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0035-z

Keywords

Navigation