Skip to main content
Log in

Infinitely many solutions of some nonlinear variational equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The aim of this paper is investigating the existence of one or more critical points of a family of functionals which generalizes the model problem

$$ {\bar J}(u)=\int \limits _\Omega {\bar A} (x,u)|\nabla u|^p dx - \int \limits _\Omega G(x,u) dx$$

in the Banach space \({W^{1,p}_0(\Omega) \cap L^\infty(\Omega)}\) , being Ω a bounded domain in \({\mathbb {R}^N}\) . In order to use “classical” theorems, a suitable variant of condition (C) is proved and \({W^{1,p}_0(\Omega)}\) is decomposed according to a “good” sequence of finite dimensional subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arcoya D., Boccardo L.: Critical points for multiple integrals of the calculus of variations. Arch. Ration. Mech. Anal. 134, 249–274 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arcoya D., Boccardo L.: Some remarks on critical point theory for nondifferentiable functionals. NoDEA Nonlinear Differ. Equ. Appl. 6, 79–100 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arcoya D., Boccardo L., Orsina L.: Existence of critical points for some noncoercive functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 437–457 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bartolo P., Benci V., Fortunato D.: Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal. TMA 7, 981–1012 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boccardo L., Murat F., Puel J.P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. IV Ser. 152, 183–196 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Browder F.E.: Existence theorems for nonlinear partial differential equations. In: Chern, S.S., Smale, S.(eds) Proceedings of Symposia in Pure Mathematics, vol. XVI, pp. 1–60. AMS, Providence (1970)

    Google Scholar 

  8. Candela A.M., Palmieri G.: Multiple solutions of some nonlinear variational problems. Adv. Nonlinear Stud. 6, 269–286 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Candela, A.M., Palmieri, G.: Some abstract critical point theorems and applications (preprint)

  10. Canino A.: Multiplicity of solutions for quasilinear elliptic equations. Topol. Methods Nonlinear Anal. 6, 357–370 (1995)

    MATH  MathSciNet  Google Scholar 

  11. Cerami G.: Un criterio di esistenza per i punti critici su varietà illimitate. Istit. Lombardo Accad. Sci. Lett. Rend. A 112, 332–336 (1978)

    MathSciNet  Google Scholar 

  12. Dacorogna B.: Direct Methods in the Calculus of Variations. Springer, New York (1989)

    MATH  Google Scholar 

  13. Degiovanni M., Lancelotti S.: Linking over cones and nontrivial solutions for p–Laplace equations with p–superlinear nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 907–919 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dinca G., Jebelean P., Mawhin J.: Variational and topological methods for Dirichlet problems with p–Laplacian. Port. Math. (N.S.) 58, 339–378 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Ladyzhenskaya O.A., Ural’tseva N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  16. Lindqvist P.: On the equation \({{\rm div} (|\nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2}u =0}\). Proc. Am. Math. Soc. 109, 157–164 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Marzocchi M.: Multiple solutions of quasilinear equations involving an area–type term. J. Math. Anal. Appl. 196, 1093–1104 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Palais R.S.: Morse theory on Hilbert manifolds. Topology 2, 299–340 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pellacci B., Squassina M.: Unbounded critical points for a class of lower semicontinuous functionals. J. Diff. Equ. 201, 25–62 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math., vol. 65. AMS, Providence (1986)

  21. Struwe M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 3rd edn. Springer, Berlin (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Candela.

Additional information

The authors acknowledge the support of M.I.U.R. (research funds ex 40% and 60%).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candela, A.M., Palmieri, G. Infinitely many solutions of some nonlinear variational equations. Calc. Var. 34, 495–530 (2009). https://doi.org/10.1007/s00526-008-0193-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0193-2

Mathematics Subject Classification (2000)

Navigation