Skip to main content
Log in

On the volume functional of compact manifolds with boundary with constant scalar curvature

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the volume functional on the space of constant scalar curvature metrics with a prescribed boundary metric. We derive a sufficient and necessary condition for a metric to be a critical point, and show that the only domains in space forms, on which the standard metrics are critical points, are geodesic balls. In the zero scalar curvature case, assuming the boundary can be isometrically embedded in the Euclidean space as a compact strictly convex hypersurface, we show that the volume of a critical point is always no less than the Euclidean volume bounded by the isometric embedding of the boundary, and the two volumes are equal if and only if the critical point is isometric to a standard Euclidean ball. We also derive a second variation formula and apply it to show that, on Euclidean balls and “small” hyperbolic and spherical balls in dimensions 3 ≤ n ≤ 5, the standard space form metrics are indeed saddle points for the volume functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agol I., Storm P.A., Thurston W.P.: Lower bounds on volumes of hyperbolic Haken 3-manifolds. J. Am. Math. Soc. 20(4), 1053–1077 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnowitt R., Deser S., Misner C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122(2), 997–1006 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartnik R.: Phase space for the Einstein equations. Comm. Anal. Geom. 13(5), 845–885 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Beig, R.: TT-tensors and conformally flat structures on 3-manifolds. Mathematics of gravitation, Part I (Warsaw, 1996), vol. 41, pp. 109–118. Banach Center Publ., Part I. Polish Acad. Sci. (1997)

  5. Besse A.L.: Einstein Manifolds. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  6. Bonnesen, T., Fenchel, W.: Theory of convex bodies [translated from the German, Boron, L., Christenson, C., Smith, B. (eds.) with the collaboration of W. Fenchel]. BCS Associates, Moscow (1987)

  7. Corvino J.: On the existence and stability of the Penrose compactification. Ann. Henri Poincaré 8(3), 597–620 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fischer A.E., Marsden J.E.: Deformations of the scalar curvature. Duke Math. J. 42(3), 519–547 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fan, X.-Q., Shi, Y.-G., Tam, L.-F.: Large-sphere and small-sphere limits of the Brown-York mass. Comm. Anal. Geom. (2007, to appear). arXiv:math.DG/0711.2552

  10. Fischer-Colbrie D., Schoen R.: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33(2), 199–211 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations Of Second Order, 2nd edn. Springer, Heidelberg (1983)

    MATH  Google Scholar 

  12. Miao P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6(6), 1163–1182 (2003)

    Google Scholar 

  13. Miao P.: On existence of static metric extensions in general relativity. Comm. Math. Phys. 241(1), 27–46 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002, preprint). arXiv:math.DG/0211159

  15. Perelman, G.: Ricci flow with surgery on three-manifolds (2003, preprint) arXiv:math.DG/0303109

  16. Sattinger D.: Topics in stability and bifurcation theory. Lecture Notes in Math. vol. 309. Springer, Berlin (1973)

    Google Scholar 

  17. Schoen R., Yau S.-T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65, 45–76 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in calculus of variations (Montecatini Terme, 1987). Lecture Notes in Math., vol. 1365, pp. 120–154. Springer, Berlin (1989)

  19. Shi Y.-G., Tam L.-F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Diff. Geom. 62, 79–125 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Shi Y.-G., Tam L.-F.: Rigidity of compact manifolds and positivity of quasi-local mass. Class. Quantum Gravity 24(9), 2357–2366 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sperner E.: Zur Symmetrisierung von Funktionen auf Sphären. Math Z. 134, 317–327 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  22. Witten E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80, 381–402 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengzi Miao.

Additional information

The research of Luen-Fai Tam was partially supported by Hong Kong RGC General Research Fund # GRF 2160357.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, P., Tam, LF. On the volume functional of compact manifolds with boundary with constant scalar curvature. Calc. Var. 36, 141–171 (2009). https://doi.org/10.1007/s00526-008-0221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0221-2

Mathematics Subject Classification (2000)

Navigation