Skip to main content
Log in

Abstract

We prove existence results for Dirac-harmonic maps using index theoretical tools. They are mainly interesting if the source manifold has dimension 1 or 2 modulo 8. Our solutions are uncoupled in the sense that the underlying map between the source and target manifolds is a harmonic map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammann B., Dahl M., Humbert E.: Harmonic spinors and local deformations of the metric. Math. Res. Lett. 18, 927–936 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Ammann B., Dahl M., Humbert E.: Surgery and harmonic spinors. Adv. Math. 220, 523–539 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ammann, B., Ginoux, N.: Examples of Dirac-harmonic maps after Jost-Mo-Zhu. http://www.mathematik.uni-regensburg.de/ginoux (2009)

  4. Bär C.: Metrics with harmonic spinors. Geom. Funct. Anal. 6, 899–942 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bär C.: Harmonic spinors for twisted Dirac operators. Math. Ann. 309(2), 225–246 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bär C., Dahl M.: Surgery and the Spectrum of the Dirac operator. J. Reine. Angew. Math. 552, 53–76 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Bär C., Schmutz P.: Harmonic spinors on Riemann surfaces. Ann. Glob. Anal. Geom. 10, 263–273 (1992)

    Article  MATH  Google Scholar 

  8. Chen Q., Jost J., Li J., Wang G.: Regularity theorems and energy identities for Dirac-harmonic maps. Math. Z. 251(1), 61–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen Q., Jost J., Li J., Wang G.: Dirac-harmonic maps. Math. Z. 254(2), 409–432 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen Q., Jost J., Wang G.: Liouville theorems for Dirac-harmonic maps. J. Math. Phys. 48(13), 113517 (2007)

    Article  MathSciNet  Google Scholar 

  11. Chen Q., Jost J., Wang G.: Nonlinear Dirac equations on Riemann surfaces. Ann. Glob. Anal. Geom. 33(3), 253–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dahl M.: On the space of metrics with invertible Dirac operator. Comment. Math. Helv. 83(2), 451–469 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deligne, P., Freed, D.: Supersolutions. In: Deligne, P., Etingof, P., Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.) Quantum Fields and Strings: A Course for Mathematicians, vol. 1, pp. 227–356. AMS, Providence (1999)

  14. Eells J., Sampson J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freed, D.: Five Lectures on Supersymmetry. American Mathematical Society, Providence (1999)

  16. Friedrich, T.: Dirac operators in Riemannian geometry. In: Graduate Studies in Mathematics, vol. 25. American Mathematical Society, Providence (2000)

  17. Ginoux N., Habib G.: The spectrum of the twisted Dirac operator on Kähler submanifolds of the complex projective space. Manuscr. Math. 137(1–2), 215–231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hijazi, O.: Spectral properties of the Dirac operator and geometrical structures. In: Geometric Methods for Quantum Field Theory (Villa de Leyva, 1999), pp. 116–169. World Science Publication, River Edge (2001)

  19. Hitchin N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Isobe T.: Nonlinear Dirac equations with critical nonlinearities on compact Spin manifolds. J. Funct. Anal. 260(1), 253–307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jost J., Mo X., Zhu M.: Some explicit constructions of Dirac-harmonic maps. J. Geom. Phys. 59(11), 1512–1527 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kosinski, A.A.: Differential manifolds. In: Pure and Applied Mathematics, vol. 138. Academic Press Inc., Boston (1993)

  23. Lawson, H.B., Michelsohn, M.-L.: Spin geometry. In: Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

  24. Lemaire L.: Applications harmoniques de surfaces riemanniennes. J. Differ. Geom. 13(1), 51–78 (1978)

    MathSciNet  MATH  Google Scholar 

  25. Milnor, J.W., Stasheff, J.D.: Characteristic classes. In: Annals of Mathematics Studies, vol. 76. Princeton University Press, Princeton (1974)

  26. Mo X.: Some rigidity results for Dirac-harmonic maps. Publ. Math. Debrecen 77(3-4), 427–442 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Parker T.H.: Bubble tree convergence for harmonic maps. J. Differ. Geom. 44, 595–633 (1996)

    MATH  Google Scholar 

  28. Parker T.H.: What is a bubble tree?. Notices AMS 50, 666–667 (2003)

    Google Scholar 

  29. Sacks J., Uhlenbeck K.: The existence of minimal immersions of 2-spheres. Ann. Math. 2(113), 1–24 (1981)

    Article  MathSciNet  Google Scholar 

  30. Schoen R., Yau S.-T.: Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Comment. Math. Helv. 51(3), 333–341 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Seeger, L.: Harmonische Spinoren auf gerade-dimensionalen Sphären. PhD Thesis, University of Hamburg, Shaker, Aachen. ISBN:978-3-8265-8755-9 (2000)

  32. Steenrod, N.: The topology of fibre bundles. In: Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton (1951)

  33. Wang, C., Xu, D.: Regularity of Dirac-Harmonic Maps. Int. Math. Res. Not.IMRN 2009, no. 20, pp. 3759–3792 (2009)

  34. Weidmann, J.: Linear operators in Hilbert spaces. In: Graduate Texts in Mathematics, vol. 68. Springer, New York (1980)

  35. Xin, Y.L.: Nonexistence and existence for harmonic maps in Riemannian manifolds. In: Proceedings of the 1981 Shanghai Symposium on Differential Geometry and Differential Equations (Shanghai/Hefei, 1981), pp. 529–538. Science Press, Beijing (1984)

  36. Xin, Y.L.: Geometry of harmonic maps. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 23. Birkhäuser, Boston (1996)

  37. Yang L.: A structure theorem of Dirac-harmonic maps between spheres. Calc. Var. 35(4), 409–420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhao L.: Energy identities for Dirac-harmonic maps. Calc. Var. 28(1), 121–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhu M.: Dirac-harmonic maps from degenerating spin surfaces. I. The Neveu–Schwarz case. Calc. Var. 35(2), 169–189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhu M.: Regularity for weakly Dirac-harmonic maps to hypersurfaces. Ann. Glob. Anal. Geom. 35(4), 405–412 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Ammann.

Additional information

Communicated by J.Jost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammann, B., Ginoux, N. Dirac-harmonic maps from index theory. Calc. Var. 47, 739–762 (2013). https://doi.org/10.1007/s00526-012-0534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0534-z

Mathematics Subject Classification

Navigation