Skip to main content
Log in

Regularity at the free boundary for Dirac-harmonic maps from surfaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish the regularity theory for certain critical elliptic systems with an anti-symmetric structure under inhomogeneous Neumann and Dirichlet boundary constraints. As applications, we prove full regularity and smooth estimates at the free boundary for weakly Dirac-harmonic maps from spin Riemann surfaces. Our methods also lead to the full interior \(\epsilon \)-regularity and smooth estimates for weakly Dirac-harmonic maps in all dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Albertsson, C., Lindström, U., Zabzine, M.: \(N=1\) supersymmetric sigma model with boundaries. I. Comm. Math. Phys. 233(3), 403–421 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Q., Jost, J., Li, J., Wang, G.: Dirac-harmonic maps. Math. Z. 254, 409–432 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Q., Jost, J., Li, J., Wang, G.: Regularity theorems and energy identities for Dirac-harmonic maps. Math. Z. 251, 61–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Q., Jost, J., Wang, G., Zhu, M.: The boundary value problem for Dirac-harmonic maps. J. Eur. Math. Soc. (JEMS) 15(3), 997–1031 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coifman, R., Lions, P.L., Meyer, Y., Semmes, S.: Compensated compactness and hardy spaces. J. Math. Pures Appl., 72(3), 247–286 (1993)

  9. Deligne, P., et al.: Quantum fields and strings: a course for mathematicians, vol. I. Amer. Math. Soc. and Inst. Adv. Study, Princeton (1999)

    Google Scholar 

  10. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton (1983)

  11. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin (2001) (reprint of the 1998 edition)

  12. Gibbons, G.W., Hawking, S.W., Horowitz, G.T., Perry, M.J.: Positive mass theorems for black holes. Comm. Math. Phys. 88, 295–308 (1983)

    Article  MathSciNet  Google Scholar 

  13. Giaquinta, M., Hildebrandt, S.: A priori estimates for harmonic mappings. J. Reine Angew. Math. 336, 124–64 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Gulliver, R., Jost, J.: Harmonic maps which solve a free-boundary problem. J. Reine Angew. Math. 381, 61–89 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Hélein, F.: Harmonic maps, conservation laws and moving frames, vol. 150 of Cambridge Tracts in Mathematics, 2nd edn. Cambridge University Press, Cambridge (2002) (translated from the 1996 French original, With a foreword by James Eells., 1983)

  16. Hildebrandt, S.: Free boundary problems for minimal surfaces and related questions. Frontiers of the mathematical sciences. Comm. Pure Appl. Math. 39(suppl.), S111–S138 (1986) (New York, 1985)

  17. Hijazi, O., Montiel, S., Roldán, A.: Eigenvalue boundary problems for the Dirac operator. Comm. Math. Phys. 231(3), 375–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jost J.: Geometry and physics. Springer (2009)

  19. Jost, J., Wu, R., Zhu, M.: In preparation (2016)

  20. Lawson, H.B., Michelsohn, M.L.: Spin Geometry. In: Princeton Mathematical Series, vol. 38, p. xii+427. Princeton University Press, Princeton (1989)

  21. Moser, R.: An \({L}^p\) regularity theory for harmonic maps. Trans. Am. Math. Soc. 367, 1–30 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peetre, Jaak: On convolution operators leaving \(L^{p,}\,^{\lambda }\) spaces invariant. Ann. Mat. Pura Appl. 4(72), 295–304 (1966)

    MathSciNet  MATH  Google Scholar 

  23. Polchinski, J.: Lectures on D-branes. (English summary) fields, strings and duality. World Sci. Publ, River Edge (1997) (Boulder, CO, 293–356, 1996)

  24. Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168, 1–22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rivière, T., Struwe, M.: Partial regularity for harmonic maps and related problems. Comm. Pure Appl. Math. 61(4), 451–463 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rupflin, M.: An improved uniqueness result for the harmonic map flow in two dimensions. Calc. Var. Partial Differ. Equations 33(3), 329–341 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Scheven, C.: Partial regularity for stationary harmonic maps at a free boundary. Math. Z. 253(1), 135–157 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schikorra, A.: A remark on gauge transformations and the moving frame method. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 503–515 (2010)

  29. Schikorra, A.: \(\epsilon \)-regularity for systems involving non-local, antisymmetric operators (2012) (preprint)

  30. Sharp, B.: Compensation phenomena in geometric partial differential equations. Ph.D thesis, University of Warwick. http://wrap.warwick.ac.uk/50026/ (2012)

  31. Sharp, B.: Higher integrability for solutions to a system of critical elliptic PDE. Methods Appl. Anal. 21(2), 221–240 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Sharp, B., Topping, P.: Decay estimates for Rivière’s equation, with applications to regularity and compactness. Trans. Am. Math. Soc. 365(5), 2317–2339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, C.: A remark on nonlinear Dirac equations. Proc. Am. Math. Soc. 138(10), 3753–3758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, C.: Xu, D.: Regularity of Dirac-harmonic maps. Int. Math. Res. Not. IMRN (20), 3759–3792 (2009)

  35. Wehrheim, K.: Uhlenbeck compactness. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2004)

    Book  Google Scholar 

  36. Zhu, M.: Regularity for weakly Dirac-harmonic maps to hypersurfaces. Ann. Global Anal. Geom. 35(4), 405–412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, M.: Regularity for harmonic maps into certain Pseudo-Riemannian manifolds. J. Math. Pures Appl. 99(1), 106–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was started whilst both authors were supported by The Leverhulme Trust at the University of Warwick. The second author has received funding from the European Research Council under the European Union—Seventh Framework Programme (FP7/2007-2013)/ERC Arant Agreement No. 267087. The first author has also received funding from the European Research Council STG agreement number P34897. The first author would like to thank Jürgen Jost and the Max Plank Institute for Mathematics in the Sciences for their hospitality during the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Sharp.

Additional information

Communicated by J. Jost.

Appendices

Appendix 1: Morrey spaces

We introduce the Morrey spaces \(M^{p,\beta }(E)\) for \(1\le p<\infty \) and \(0\le \beta \le m\) (\(E \subset \mathbb {R}^m\)). We say that \(g \in M^{p,\beta }(E)\) if \(M_{\beta }[g^p](x):= \sup _{r>0} r^{-\beta } \int _{B_r(x)\cap E} |g|^p \in L^{\infty }\) with norm (which makes \(M^{p,\beta }\) a Banach space) \(\Vert g\Vert _{M^{p,\beta }(E)}^p = \Vert M_{\beta }[g^p]\Vert _{L^{\infty }(E)}.\)

We note the following extension theorem for Sobolev-Morrey spaces:

Theorem 4.6

The unit ball \(B_1\subset \mathbb {R}^m\) is an extension domain for \(M_1^{p,\beta }\). Given \(v\in M_1^{p,\beta }(B_1)\) there exists \({\tilde{v}}\in M_1^{p,\beta }(\mathbb {R}^m)\) such that

$$\begin{aligned} \Vert {\tilde{v}}\Vert _{M^{p,\beta }} + \Vert {\nabla }{\tilde{v}}\Vert _{M^{p,\beta }} \le C\left( \Vert v\Vert _{M^{p,\beta }(B_1)} + \Vert {\nabla }v\Vert _{M^{p,\beta }(B_1)}\right) \end{aligned}$$

and \(v=\tilde{v}\) almost everywhere.

We could not find a proof of this theorem, however it follows easily by standard techniques for extension theorems. In general it should remain true for any domain U with \(\partial U\) as above but \(\phi \) must be Lipschitz.

We also note that if \(\int _{B_1} v = 0\) then

$$\begin{aligned} \Vert {\nabla }{\tilde{v}}\Vert _{M^{p,\beta }} \le C\left( [v]_{\mathcal {C}^{p,\beta }(B_1)} + \Vert {\nabla }v\Vert _{M^{p,\beta }(B_1)}\right) \le C\Vert {\nabla }v\Vert _{M^{p,\beta }(B_1)} \end{aligned}$$

where \(\mathcal {C}^{p,\beta }\) is the Campanato space—see [10].

Appendix 2: Classical boundary value estimates

Here we recall results about the classical boundary value problems for the Laplacian and the Cauchy-Riemann operator, we refer the reader to [2, 3, 35] for background material. For all of the theorems below \(U\subset \mathbb {R}^m\) is any open domain and \(T\subset \partial U\) is a smooth boundary portion.

Theorem 4.7

Let \(k\in \mathbb {N}_0\) and \(1<p<\infty \). Suppose that \(u\in W^{1,p}\) weakly solves

$$\begin{aligned} -{\Delta }u= & {} f\in W^{k,p}(U), \end{aligned}$$
(4.8)
$$\begin{aligned} u= & {} 0 \quad \text {on }T \end{aligned}$$
(4.9)

then for any \(V\subset \subset U\cup T\), \(u\in W^{k+2, p}(V)\) and there exists some \(C=C(p,k,V,T)>0\) such that

$$\begin{aligned} \Vert u\Vert _{W^{k+2,p}(V)} \le C\left( \Vert f\Vert _{W^{k,p}(U)} +\Vert u\Vert _{L^p(U)}\right) . \end{aligned}$$

Theorem 4.8

Let \(k\in \mathbb {N}_0\) and \(1<p<\infty \). Suppose that \(u\in W^{1,p}\) weakly solves

$$\begin{aligned} -{\Delta }u= & {} f\in W^{k,p}(U), \end{aligned}$$
(4.10)
$$\begin{aligned} {\frac{\partial u}{\partial \overrightarrow{n}}}= & {} g \in W_{\partial }^{k+1,p}(T) \end{aligned}$$
(4.11)

then for any \(V \subset \subset U\cup T\), \(u\in W^{k+2, p}(V)\) and there exists some \(C=C(p,k,V,T)>0\) such that

$$\begin{aligned} \Vert u\Vert _{W^{k+2,p}(V)} \le C\left( \Vert f\Vert _{W^{k,p}(U)}+\Vert g\Vert _{W_{\partial }^{k+1,p}(T)} + \Vert u\Vert _{L^p(U)}\right) . \end{aligned}$$

We also recall the analogue for the Cauchy-Riemann operator in \(\mathbb {C}\).

Theorem 4.9

Let \(U\subset \mathbb {C}\) be any domain and \(T\subset \partial U\) a smooth boundary portion, \(k\in \mathbb {N}_0\) and \(1<p<\infty \). Suppose that \(h\in W^{1,p}\) solves

$$\begin{aligned} \overline{\partial }h = f\in W^{k,p}(U), \end{aligned}$$
(4.12)
$$\begin{aligned} Re(h) =0 \quad \text {or}\quad Im(h) = 0 \quad \text {on }T \end{aligned}$$
(4.13)

then for any \(V\subset \subset U\cup T\), \(h\in W^{k+1, p}(V)\) and there exists some \(C=C(p,k,V,T)>0\) such that

$$\begin{aligned} \Vert h\Vert _{W^{k+1,p}(V)} \le C\left( \Vert f\Vert _{W^{k,p}(U)} +\Vert h\Vert _{L^{p}(U)}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharp, B., Zhu, M. Regularity at the free boundary for Dirac-harmonic maps from surfaces. Calc. Var. 55, 27 (2016). https://doi.org/10.1007/s00526-016-0960-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-0960-4

Mathematics Subject Classification

Navigation