Skip to main content
Log in

Harmonic maps with prescribed degrees on the boundary of an annulus and bifurcation of catenoids

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(A \subset \mathbb {R} ^2 \) be a smooth bounded doubly connected domain. We consider the Dirichlet energy \(E(u)=\int _{A} |\nabla u|^{2}\), where \(u:A \rightarrow \mathbb {C}\), and look for critical points of this energy with prescribed modulus \(|u|=1\) on \(\partial A\) and with prescribed degrees on the two connected components of \(\partial A\). This variational problem is a problem with lack of compactness. Hence we can not use the direct methods of calculus of variations. Our analysis relies on the so-called Hopf quadratic differential and on a strong link between this problem and the problem of finding all minimal surfaces bounded by two p-coverings of circles in parallel planes. We then construct new immersed minimal surfaces in \(\mathbb {R}^3\) with this property. These surfaces are obtained by bifurcation from a family of p-coverings of catenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alama, S., Bronsard, L., Mironescu, P.: On compound vortices in a two-component Ginzburg–Landau functional. Indiana Univ. Math. J. 61(5), 1861–1909 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbosa, J.L., do Carmo, M.: On the size of a stable minimal surface in \(R^{3}\). Am. J. Math. 98(2), 515–528 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, M.: Sur les premières valeurs propres des variétés riemanniennes. Comp. Math. 26, 129–149 (1973)

    MATH  Google Scholar 

  4. Berlyand, L., Golovaty, D., Rybalko, V.: Nonexistence of Ginzburg–Landau minimizers with prescribed degree on the boundary of a doubly connected domain. C. R. Math. Acad. Sci. Paris 343(1), 63–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berlyand, L., Mironescu, P.: Ginzburg–Landau minmizers in perforated domains with prescibed degrees. https://hal.archives-ouvertes.fr/hal-00747687

  6. Berlyand, L., Mironescu, P.: Ginzburg–Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices. J. Funct. Anal. 239(1), 76–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berlyand, L., Mironescu, P., Rybalko, V., Sandier, E.: Minimax critical points in Ginzburg–Landau problems with semi-stiff boundary conditions: existence and bubbling. Commun. Partial Differ. Equ. 39(5), 946–1005 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berlyand, L., Rybalko, V.: Solutions with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation. J. Eur. Math. Soc. 12(6), 1497–1531 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Berlyand, L., Voss, K.: Symmetry breaking in annular domains for a Ginzburg–Landau superconductivity model. In: IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media, pp. 189–200. Springer (2002)

  10. Bethuel, F., Brézis, H., Hélein, F.: Ginzburg–Landau Vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc., Boston (1994)

    MATH  Google Scholar 

  11. Boutet de Monvel-Berthier, A., Georgescu, V., Purice, R.: A boundary value problem related to the Ginzburg–Landau model. Commun. Math. Phys. 142(1), 1–23 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brézis, H.: Degree theory: old and new. In: Topological Nonlinear Analysis, II (Frascati, 1995), volume 27 of Progr. Nonlinear Differential Equations Appl., pp. 87–108. Birkhäuser Boston, Boston (1997)

  13. Brézis, H.: New questions related to the topological degree. In: The Unity of Mathematics, volume 244 of Progr. Math., pp. 137–154. Birkhäuser Boston, Boston (2006)

  14. Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115. Academic Press Inc., Orlando (1984)

    MATH  Google Scholar 

  15. Courant, R., Hilbert, D.: Methods of mathematical physics, vol. I. Interscience Publishers Inc, New York (1953)

    MATH  Google Scholar 

  16. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Da Lio, F., Rivière, T.: Three-term commutator estimates and the regularity of \(\frac{1}{2}\)-harmonic maps into spheres. Anal. PDE 4(1), 149–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal Surfaces, volume 339 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. With assistance and contributions by A. Küster and R, Jakob. Springer, Heidelberg (2010)

  19. Dos Santos, M.: Local minimizers of the Ginzburg–Landau functional with prescribed degrees. J. Funct. Anal. 257(4), 1053–1091 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Evans, L.C.: Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

  21. Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226(5), 4011–4030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fraser, A., Schoen, R.: Minimal surfaces and eigenvalue problems. In: Geometric Analysis, Mathematical Relativity, and Nonlinear Partial Differential Equations, volume 599 of Contemp. Math., pp. 105–121. Amer. Math. Soc., Providence (2013)

  23. Golovaty, D., Berlyand, L.: On uniqueness of vector-valued minimizers of the Ginzburg–Landau functional in annular domains. Calc. Var. Partial Differ. Equ. 14(2), 213–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hauswirth, L., Sa Earp, R., Toubiana, E.: Associate and conjugate minimal immersions in \(M\times {\mathbf{R}}\). Tohoku Math. J. (2) 60(2), 267–286 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hélein, F.: Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2001). Notes taken by Roger Moser

  26. Iwaniec, T., Kovalev, L., Onninen, J.: Doubly connected minimal surfaces and extremal harmonic mappings. J. Geom. Anal. 22(3), 726–762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iwaniec, T., Onninen, J.: n-harmonic mappings between annuli: the art of integrating free Lagrangians. Memoirs of the American Mathematical Society, vol. 218, no. 1023. American Mathematical Society, Providence (2012)

  28. Iwaniec, T., Onninen, J.: Mappings of least Dirichlet energy and their Hopf differentials. Arch. Ration. Mech. Anal. 209(2), 401–453 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995) (Reprint of the 1980 edition)

  30. Koiso, M., Palmer, B., Piccione, P.: Bifurcation and symmetry breaking of nodoids with fixed boundary. Adv. Calc. Var. 8(4), 337–370 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuwert, E.: Minimizing the energy of maps from a surface into a 2-sphere with prescribed degree and boundary values. Manuscr. Math. 83, 31–38 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lamy, X.: Bifurcation analysis in a frustrated nematic cell. J. Nonlinear Sci. 24(6), 1197–1230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lamy, X., Petru, M.: Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains. J. Math. Pures Appl. (9) 102(2), 385–418 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mironescu, P.: Size of planar domains and existence of minimizers of the Ginzburg–Landau energy with semistiff boundary conditions. J. Math. Sci. 202(5), 703–734 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Misiats, O.: The necessary conditions for the existence of local Ginzburg–Landau minimizers with prescribed degrees on the boundary. Asymptot. Anal. 89(1–2), 37–61 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Rodiac, R., Sandier, E.: Insertion of bubbles for the Ginzburg–Landau energy. J. Fixed Point Theory Appl. (2014). doi:10.1007/s11784-014-0201-4

  37. Sandier, E.: The symmetry of minimizing harmonic maps from a two dimensional domain to the sphere. Ann. lnst. H. Poincaré Anal. Non linéaire 10(5), 549–559 (1993)

  38. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model, volume 70. Progress in Nonlinear Partial Differential Equations Birkhauser (2007)

  39. Schoen, R.: Existence and geometric structure of metrics on surfaces which extremize eigenvalues. Bull. Braz. Math. Soc. (N.S.) 44(4), 777–807 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shiffman, M.: On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes. Ann. Math. 2(63), 77–90 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stein, E.M., Shakarchi, R.: Complex Analysis. Princeton Lectures in Analysis, II. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

Download references

Acknowledgments

The second author wishes to warmly thank Etienne Sandier for his help and for constant support during the elaboration of this paper. He also wants to thank Mickaël Dos Santos, Yuxin Ge, Laurent Mazet, Rabah Souam, Eric Toubiana and his colleague Peng Zhang for very useful discussions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Rodiac.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauswirth, L., Rodiac, R. Harmonic maps with prescribed degrees on the boundary of an annulus and bifurcation of catenoids. Calc. Var. 55, 120 (2016). https://doi.org/10.1007/s00526-016-1059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1059-7

Mathematics Subject Classification

Navigation