Skip to main content
Log in

Bakry–Émery curvature and diameter bounds on graphs

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove finiteness and diameter bounds for graphs having a positive Ricci-curvature bound in the Bakry–Émery sense. Our first result using only curvature and maximal vertex degree is sharp in the case of hypercubes. The second result depends on an additional dimension bound, but is independent of the vertex degree. In particular, the second result is the first Bonnet–Myers type theorem for unbounded graph Laplacians. Moreover, our results improve diameter bounds from Fathi and Shu (Bernoulli 24(1):672–698, 2018) and Horn et al. (J für die reine und angewandte Mathematik (Crelle’s J), 2017, https://doi.org/10.1515/crelle-2017-0038) and solve a conjecture from Cushing et al. (Bakry–Émery curvature functions of graphs, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D., Émery, M.: Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84. In: Azéma, J., Yor, M. (eds.) Lecture Notes in Mathematics 1123, pp. 177–206. Springer, Berlin (1985)

  2. Bakry, D., Ledoux, M.: Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85(1), 253–270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.-T.: Li–Yau inequality on graphs. J. Differ. Geom. 99, 359–405 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, S.Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143(3), 289–297 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cushing, D., Liu, S., Peyerimhoff, N.: Bakry–Émery curvature functions of graphs (2016). arXiv:1606.01496

  6. DeVos, M., Mohar, B.: An analogue of the Descartes–Euler formula for infinite graphs and Higuchi’s conjecture. Trans. Am. Math. Soc. 359(7), 3287–3300 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fathi, M., Shu, Y.: Curvature and transport inequalities for Markov chains in discrete spaces. Bernoulli 24(1), 672–698 (2018). arXiv:1509.07160

    Article  MathSciNet  MATH  Google Scholar 

  8. Forman, R.: Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete Comput. Geom. 29(3), 323–374 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gong, C., Lin, Y.: Properties for CD Inequalities with unbounded Laplacians. Chin. Ann. Math. Ser. B 38(5), 1059–1070 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Higuchi, Y.: Combinatorial curvature for planar graphs. J. Graph Theory 38(4), 220–229 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horn, P., Lin, Y., Liu, S., Yau, S.-T.: Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs. J für die reine und angewandte Mathematik (Crelle’s J) (2017). https://doi.org/10.1515/crelle-2017-0038

  12. Hua, B., Lin, Y.: Stochastic completeness for graphs with curvature dimension conditions. Adv. Math. 306, 279–302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klartag, B., Kozma, G., Ralli, P., Tetali, P.: Discrete curvature and Abelian groups. Can. J. Math. 68(3), 655–674 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keller, M., Peyerimhoff, N., Pogorzelski, F.: Sectional curvature of polygonal complexes with planar substructures. Adv. Math. 307, 1070–1107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, Y., Liu, S.: Equivalent Properties of CD Inequality on graph (2015). arXiv:1512.02677

  16. Lin, Y., Yau, S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17(2), 343–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Münch, F.: Li–Yau inequality on finite graphs via non-linear curvature dimension conditions (2015). arXiv:1501.05839

  18. Münch, F.: Remarks on curvature dimension conditions on graphs. Calc. Var. Partial Differ. Equ. 56(1), 11 (2017). arXiv:1501.05839

    Article  MathSciNet  MATH  Google Scholar 

  19. Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmuckenschläger, M.: Curvature of nonlocal Markov generators, Convex Geometric Analysis (Berkeley, CA, 1996), volume 34 of Mathematical Sciences Research Institute Publications, pp. 189–197. Cambridge University Press, Cambridge (1999)

  22. Stone, D.A.: A combinatorial analogue of a theorem of Myers, Illinois J. Math. 20 (1), 12–21, (1976) and Erratum. Ill. J. Math. 20(3), 551–554 (1976)

Download references

Acknowledgements

We gratefully acknowledge partial support by the EPSRC Grant EP/K016687/1. FM wants to thank the German Research Foundation (DFG) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florentin Münch.

Additional information

Communicated by J. Jost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Münch, F. & Peyerimhoff, N. Bakry–Émery curvature and diameter bounds on graphs. Calc. Var. 57, 67 (2018). https://doi.org/10.1007/s00526-018-1334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1334-x

Mathematics Subject Classification

Navigation