Skip to main content
Log in

View-invariant motion trajectory-based activity classification and recognition

  • Regular Paperss
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Motion trajectories provide rich spatio-temporal information about an object's activity. The trajectory information can be obtained using a tracking algorithm on data streams available from a range of devices including motion sensors, video cameras, haptic devices, etc. Developing view-invariant activity recognition algorithms based on this high dimensional cue is an extremely challenging task. This paper presents efficient activity recognition algorithms using novel view-invariant representation of trajectories. Towards this end, we derive two Affine-invariant representations for motion trajectories based on curvature scale space (CSS) and centroid distance function (CDF). The properties of these schemes facilitate the design of efficient recognition algorithms based on hidden Markov models (HMMs). In the CSS-based representation, maxima of curvature zero crossings at increasing levels of smoothness are extracted to mark the location and extent of concavities in the curvature. The sequences of these CSS maxima are then modeled by continuous density (HMMs). For the case of CDF, we first segment the trajectory into subtrajectories using CDF-based representation. These subtrajectories are then represented by their Principal Component Analysis (PCA) coefficients. The sequences of these PCA coefficients from subtrajectories are then modeled by continuous density hidden Markov models (HMMs). Different classes of object motions are modeled by one Continuous HMM per class where state PDFs are represented by GMMs. Experiments using a database of around 1750 complex trajectories (obtained from UCI-KDD data archives) subdivided into five different classes are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bashir, F., Khanvilkar, S., Schonfeld, D., Khokhar, A.: Multimedia systems: content-based indexing and retrieval. In: Chen, W.K. (ed.) The Electrical Engineering Handbook, Sect. 4, Chapter 6. Academic Press (2004)

  2. Bashir, F., Khokhar, A., Schonfeld, D.: Segmented trajectory based indexing and retrieval of video data. In: International Conference on Image Processing. Barcelona, Spain (2003)

  3. Bashir, F., Khokhar, A., Schonfeld, D.: A hybrid system for affine-invariant trajectory retrieval. ACM SIGMM Multimedia Information Retrieval Workshop, New York, NY (2004)

  4. Bashir, F., Khokhar, A.: Curvature scale space based affine-invariant trajectory retrieval. In: IEEE International Multitopic Conference, INMIC 2004. Lahore, Pakistan (2004)

  5. Bashir, F., Khokhar, A., Schonfeld, D.: Automatic object trajectory-based motion recognition using gaussian mixture models. In: IEEE International Conference on Multimedia & Expo (ICME 2005). Amsterdam, the Netherlands (2005)

  6. Bashir, F., Qu, W., Khokhar, A., Schonfeld, D.: HMM-based motion recognition system using segmented PCA. In: IEEE International Conference on Image Processing (ICIP 2005). Genoa, Italy (2005)

  7. Brand, M., Oliver, N., Pentland, A.: Coupled hidden markov models for complex action recognition. In: Proceedings Conference on Computer Vision and Pattern Recognition, p. 994 (1997)

  8. Buzan, D., Sclaroff, S., Kollios, G.: Extraction and clustering of motion trajectories in video. In: International Conference on Pattern Recognition (2004)

  9. Caelli, T., McCabe, A., Briscoe, G.: Shape tracking and production using hidden markov models. Int. J. Pattern Recognit. Artificial Intell. 15(1), 197–221 (2001)

    Article  Google Scholar 

  10. Chang, S.F., Chen, W., Meng, H.J., Sundaram, H., Zhong, D.: A fully automated content-based video search engine supporting spatiotemporal queries. IEEE Trans. Circ. Sys. Video Techn. 8(5) (1998)

  11. Chen, L., Ozsu, M.T., Oria, V.: Symbolic representation and retrieval of moving object trajectories. ACM SIGMM Multimedia Information Retrieval Workshop. New York (2004)

  12. Chen, T., Huang, C., Chang, C., Wang, J.: On the Use of Gaussian Mixture Model for Speaker Variability Analysis. ICSLP. Denver, Colorado (2002)

    Google Scholar 

  13. Chen, W., Chang, S.F.: Motion Trajectory Matching of Video Objects. SPIE. San Jose, CA (2000)

    Google Scholar 

  14. Cheung, S., Zakhor, A.: Fast similarity search on video sequences. In: Proceedings IEEE International Conference on Image Processing (2003)

  15. Dagtas, S., Al-Khatib, W., Ghafoor, A., Kashyap, R.: Models for motion-based video indexing and retrieval. IEEE Trans. Image Process. 9(1), 88–101 (2000)

    Article  Google Scholar 

  16. Dimitrova, N., Golshani, F.: Motion recovery for video content classification. ACM Trans. Inf. Syst. 13(4), 408–439

  17. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  18. Hettich, S., Bay, S.D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. University of California, Department of Information and Computer Science, Irvine, California (1999)

  19. Hongeng, S., Nevatia, R., Bremond, F.: Video-based event recognition: Activity representation and probabilistic recognition methods. Comput. Vis. Image Understanding 96, 129–162 (2004)

    Article  Google Scholar 

  20. Intille, S.S., Bobick, A.F.: Recognizing planned, multiperson action. Comput. Vis. Image Understanding 81, 414–445 (2001)

    Article  MATH  Google Scholar 

  21. Isard, M., Blake, A.: A Mixed-State CONDENSATION tracker with automatic model-switching. In: Proceedings of the International Conference on Computer Vision, pp. 107–112 (1998)

  22. Ivanov, Y.A., Bobick, A.F.: Recognition of visual activities and interactions by stochastic parsing. IEEE Trans. Pattern Anal. Machine Intell. 22(8), 852–872 (2000)

    Article  Google Scholar 

  23. Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973)

    Google Scholar 

  24. Jolliffe, I.T.: Principal Component Analysis. Springer-Verlag, New York (1986)

    Google Scholar 

  25. Katz, B., Lin, J., Stauffer, C., Grimson, E.: Answering questions about moving objects in surveillance videos. In: Proceedings of AAAI Spring Symposium on New Directions in Question Answering (2003)

  26. Moghaddam, B., Wahid, W., Pentland, A.: Beyond EigenFaces: probabilistic matching for face recognition. In: International Conference on Automatic Face and Gesture Recognition. Nara, Japan (1998)

  27. Mokhtarian, F., Abbasi, S.: Retrieval of similar shapes under affine transformation. In: Proceedings of the International Conference on Visual Information Systems. Amsterdam, The Netherlands, pp. 566–574 (1999)

  28. Mokhtarian, F., Bober, M.: Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization. Kluwer Academic Publishers, Netherlands (2003)

    MATH  Google Scholar 

  29. Naphade, M., Kozintsev, I., Huang, T.: Factor graph framework for semantic video indexing. IEEE Trans. Circuits Syst. Video Technol. 12(1) (2002)

  30. Oliver, N.M., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal Machine Intell. 22(8), 831–843

  31. Pentland, A., Sclaroff, S.: Modal matching for correspondence and recognition. IEEE Trans. Pattern Anal Machine Intell. 17(6), 545–561 (1995)

    Article  Google Scholar 

  32. Porikli, F.M.: Trajectory distance metric using hidden markov model based representation. In: Sixth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, PETS (2004)

  33. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech recognition. In: Proceedings of the IEEE, vol. 77, pp. 257–286 (1989)

  34. Rangarajan, K., Allen, W., Shah, M.: Matching motion trajectories using scale-space. Pattern Recognit. 26(4), 595–610 (1993)

    Article  Google Scholar 

  35. Rao, C., Yilmaz, A., Shah, M.: View-invariant representation and recognition of actions. Int. J. Comput. Vis. 50(2), 203–226 (2002)

    Article  MATH  Google Scholar 

  36. Rea, N., Dahyot, R., Kokaram, A.: Semantic event detection in sports through motion understanding. In: Proceedings of Conference on Image and Video Retrieval. Dublin, Ireland (2004)

  37. Sahouria, E., Zakhor, A.: A Trajectory based video indexing system for street surveillance. In: IEEE International Conference on Image Processing (1999)

  38. Schonfeld, D., Lelescu, D.: VORTEX: Video retrieval and tracking from compressed multimedia databases—multiple object tracking from MPEG-2 bitstream (Invited Paper). J. Vis. Commun. Image Representation 11, 154–182 (2000)

    Article  Google Scholar 

  39. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the International Conference on Data Engineering, p. 673 (2002)

  40. Wilson, A.A., Bobick, A.F.: Hidden Markov Models for modelling and recognizing gesture under variation. Hidden Markov Models: Appl. Comput. Vis. pp. 123–160 (2001)

  41. Xie, L., Chang, S.F., Divakaran, A., Sun, H.: Structure analysis of soccer video with Hidden Markov Models. In: IEEE International Conference on Acoustic, Speech and Signal Processing. Orlando, FL (2002)

  42. Zhang, D.S.: Image retrieval based on shape. Ph.D Thesis, Monash University, Australia (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal I. Bashir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashir, F.I., Khokhar, A.A. & Schonfeld, D. View-invariant motion trajectory-based activity classification and recognition. Multimedia Systems 12, 45–54 (2006). https://doi.org/10.1007/s00530-006-0024-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-006-0024-2

Keywords

Navigation