Skip to main content
Log in

HDR image encoding using reconstruction functions based on piecewise linear approximations

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Two-layer encoding schemes for HDR images can not only reduce the storage requirements, but more importantly they can also ensure backward compatibility as imaging technology makes the transition from LDR to HDR. In this paper, we present a two-layer lossy encoding scheme for HDR images, which models each channel of the HDR image as a piecewise linear function of its tone-mapped version, to reduce the dynamic range of the residual image and achieve a better compression. The tone-mapped image and the residual image for each channel are saved as two separate LDR images, and these along with the piecewise linear models, encode the details of the HDR image. The encoded images are compatible to both HDR and non-HDR enabled devices for visualization and processing. Detailed comparison with similar existing state of the art two-layer techniques is presented to show the effectiveness of our proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. SIGGRAPH (1998)

  2. Reinhard, E., Ward, G., Pattanaik, S., Debevec, P.: High dynamic range imaging: acquisition, display, and image-based lighting, 2nd edn. Morgan Kaufmann Publishers, Burlington (2010)

    Google Scholar 

  3. Eilertsen, G., Wanat, R., Mantiuk, R.K., Unger, J.: Evaluation of tone mapping operators for HDR-Video. Comput. Graph. Forum 32(7), 275–284 (2013)

    Article  Google Scholar 

  4. Larson, G.W.: “Real Pixels” in “Graphics Gems II”. In: Arvo, J. (ed.). Academic Press (1991)

  5. Larson, G.W.: LogLuv encoding for full-gamut, high-dynamic range images. J. Graph. Tools 3(1), 15–31 (1998)

    Article  Google Scholar 

  6. Bogart, R., Kainz, F., Hess, D.: The OpenEXR file format. SIGGRAPH Sketches Appl (2003)

  7. http://www.anyhere.com/gward/hdrenc/Encodings.pdf (2014). Accessed 11 Oct 2014

  8. Taubman, D.S., Marcellin, M.W.: JPEG 2000: image compression fundamentals, standards and practice. In: Kluwer International Series in Engineering and Computer Science (2001)

  9. Ruifeng, Xu, Pattanaik, S.N., Hughes, C.E.: High-dynamic-range still-image encoding in JPEG 2000. IEEE Comput. Graph. Appl. 25(6), 57–64 (2005)

    Article  Google Scholar 

  10. Mantiuk, R., Krawczyk, G., Myszkowski, K., Siedel, H.P.: Perception-motivated high-dynamic range video encoding. ACM Trans. Graph. 23(3), 733–741 (2004)

    Article  Google Scholar 

  11. Spaulding, K.E., Woolfe, G.J., Joshi, R.L.: Using a residual image to extend the color gamut and dynamic range of an sRGB image. In: The PICS conference, pp 307–314 (2003)

  12. Ward, G., Simmons, M.: JPEG-HDR: a backwards-compatible, high dynamic range extension to JPEG. In: Proceedings of the thirteenth color imaging conference (2005)

  13. Mantiuk, R., Efremov, A., Myszkowski, K., Seidel, H.P.: Backward compatible high dynamic range MPEG video compression. SIGGRAPH (2006)

  14. Okuda, M., Adamai, N.: Two-Layer Coding Algorithm for High Dynamic Range Images based on Luminance Compensation. J. Vis. Commun. Image Represent. 18(5), 377–386 (2007)

    Article  Google Scholar 

  15. Khan, I.R.: Two layer scheme for encoding of high dynamic range images. In: IEEE International conference on acoustics, speech and signal processing (2008)

  16. Iwahash, M., Kiya, H.: Two layer lossless coding of HDR images. In: IEEE International conference on acoustics, speech and signal processing (ICASSP), pp 1340–1344. Canada (2013)

  17. Fujiki, T., Adami, N., Jinno, T., Okuda, M.: High dynamic range image compression using base map coding. In: Asia-Pacific signal and information processing association annual summit and conference (APSIPA ASC), USA, pp 1–4 (2012)

  18. Liu, J., Hassan, F., Carletta, J.: Embedding high dynamic range tone mapping in JPEG compression. In: Proc. SPIE 8655, image processing: algorithms and systems XI (2013)

  19. Korshunov, P., Ebrahimi, T.: Context-dependent JPEG backward-compatible high-dynamic range image compression. Opt. Eng. 52(10), 102006-1–102006-11 (2013)

  20. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Tran. Graph. 21(3), 267–276 (2002)

    Google Scholar 

  21. Khan, I.R., Ohba, R.:Efficient design of halfband low/high pass FIR filters using explicit formulas for tap coefficients. IEICE Trans. Fundam. E83-A(11), 2370–2373 (2000)

  22. https://www.github.com/openexr/openexr-images/(2014). Accessed 11 Oct 2014

  23. Khan, I.R., Huang, Z., Farzam, F., Manders, C., Rahardja, S.: HVS based histogram adjustment for global tone mapping, pp. 13–19. SIGGRAPH ASIA Sketches, Yokohama (2009)

    Google Scholar 

  24. Sharma, G., Wu, W., Dalal, E.N.: The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 30(1) (2005)

  25. Mantiuk, R., Daly, S.J., Myszkowski, K., Seidel, H.P.: Predicting visible differences in high dynamic range images: model and its calibration. In: Proc. SPIE 5666, Human Vision and Electronic Imaging X, pp 204–214 (2005)

  26. http://www.cybertron.cg.tu-berlin.de/eitz/hdr/code.zip(2014). Accessed 11 Oct 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishtiaq Rasool Khan.

Additional information

Communicated by P. Pala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I.R. HDR image encoding using reconstruction functions based on piecewise linear approximations. Multimedia Systems 21, 615–624 (2015). https://doi.org/10.1007/s00530-014-0437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-014-0437-2

Keywords

Navigation