Skip to main content

Advertisement

Log in

Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Pelagic deposits at Abadeh represent a complete biostratigraphic record across the Permian/Triassic boundary (PTB). The presumed water depth during deposition of these sediments was between 60 and 90 m. Similar to other Permian/Triassic boundary sections, the succession at Abadeh is characterised by a negative carbon isotope shift of approximately 4‰. The values start to decrease in the lower C. changxingensis - C. deflecta s.l. Zone, reach −0.12‰ (V-PDB) in the uppermost Permian just below the PTB, remain low to the early I. isarcica Zone (−0.32‰) and increase subsequently in the upper I. isarcica Zone. For the time interval of the PTB negative carbon isotope excursion, between the C. iranica and the I. isarcica Zones, no correlation exists between the δ13Ccarb and the δ18Ocarb. The above observations argue against the conclusion of Heydari et al. (2001) that the carbon isotope event at the P/T transition is an alteration artefact and not a global signal. The decrease in δ13Ccarb is accompanied by a ~5‰ (and potentially up to 10‰) increase in δ34SSSS. Together, these features are thought to reflect a complex global event, notably the development of widespread anoxic oceans with anoxic bottom layers rising onto the shelves. For the carbon isotope drop, other factors, such as the collapse of ocean primary productivity may also have played a role. The 87Sr/86Sr ratios of Dzhulfian seawater show only a minor increase from 0.70705 to 0.70710, reaching 0.70720 in the Dorashamian. The increase becomes steeper in the Early Triassic reaching 0.70754 in the N. dieneri Zone. The rise of the strontium isotope values is thought to be related to enhanced continental weathering under humid climatic conditions in the uppermost Permian (C. meishanensis - H. praeparvus Zone) and the lack of a dense land vegetation in the Early Triassic, prior to the Spathian (Upper Olenekian).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allan JR, Matthews RK (1982) Isotope signatures associated with early meteoric diagenesis. Sedimentology 29:797–817

    CAS  Google Scholar 

  • Basu AR, Petaev MI, Poreda RJ, Jacobsen SB, Becker L (2003) Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science 302:1388–1392

    Article  CAS  PubMed  Google Scholar 

  • Baud A, Magaritz M, Holser WT (1989) Permian-Triassic of the Tethys: carbon isotope studies. Geol Rundsch 78:649–677

    CAS  Google Scholar 

  • Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533

    Article  CAS  PubMed  Google Scholar 

  • Berner RA (2002) Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc Natl Acad Sci USA 99:4172–4177

    Article  CAS  PubMed  Google Scholar 

  • Birck JL (1986) Precision K–Rb–Sr isotopic analysis: application to Rb–Sr chronology. Chem Geol 56:73–83

    Article  CAS  Google Scholar 

  • Bowring SA, Erwin DH, Jin Y-G, Martin MW, Davidek K, Wang W (1998) U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280:1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Bruckschen P, Veizer J (1997) Oxygen and carbon isotopic composition of Dinantian brachiopods: paleoenvironmental implications for the Lower Carboniferous of Western Europe. Palaeogeogr Palaeoclimatol Palaeoecol 132:243–264

    Article  Google Scholar 

  • Bruckschen P, Oesmann S, Veizer J (1999) Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chem Geol 161:127–163

    Article  CAS  Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519

    CAS  Google Scholar 

  • Campbell IH, Czamanske GK, Fedorenko VA, Hill RI, Stepanov V (1992) Synchronism of the Siberian Traps and the Permian-Triassic boundary. Science 258:1760–1763

    CAS  Google Scholar 

  • Chen J-S, Chu X-L, Shao M-R, Zhong H (1991) Carbon isotope study of the Permian-Triassic boundary sequences in China. Chem Geol 86:239–251

    CAS  Google Scholar 

  • Chen Z-Q, Jin Y-G, Shi G-R (1998) Permian transgression-regression sequences and sea-level changes of south China. Proc R Soc Victoria 110:345–367

    Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260

    Article  CAS  Google Scholar 

  • Cortecci G, Reyes E, Berti G, Casati P (1981) Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chem Geol 34:65–79

    Article  CAS  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    CAS  Google Scholar 

  • Crowson RA, Showers WJ, Wright EK, Hoering TC (1991) Preparation of phosphate samples for oxygen isotope analysis. Anal Chem 63:2397–2400

    CAS  Google Scholar 

  • de Wit MJ, Ghosh JG, de Villiers S, Rakotosolofo N, Alexander J, Tripathi A, Looy C (2002) Multiple organic carbon isotope reversals across the Permian-Triassic boundary of terrestrial Gondwana Sequences: clues to extinction patterns and delayed ecosystem recovery. J Geol 110:227–240

    Article  Google Scholar 

  • Deuser WG (1970) Carbon-13 in Black Sea waters and implications for the origin of hydrogen sulfide. Science 168:1575–1577

    CAS  Google Scholar 

  • Dickens GR, Castillo MM, Walker JCG (1997) A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25:259–262

    Article  CAS  PubMed  Google Scholar 

  • Diener A, Ebneth S, Veizer J, Buhl D (1996) Strontium isotope stratigraphy of the Middle Devonian: brachiopods and conodonts. Geochim Cosmochim Acta 60:639–652

    Article  CAS  Google Scholar 

  • Dolenec T, Lojen S, Ramovš A (2001) The Permian-Triassic boundary in Western Slovenia (Idrijca Valley section): magnetostratigraphy, stable isotopes, and elemental variations. Chem Geol 175:175–190

    Article  CAS  Google Scholar 

  • Ebneth S, Diener A, Buhl D, Veizer J (1997) Strontium isotope systematics of conodonts: Middle Devonian, Eifel Mountains, Germany. Palaeogeogr Palaeoclimatol Palaeoecol 132:79–96

    Article  Google Scholar 

  • Epstein AG, Epstein JB, Harris LD (1977) Conodont colour alteration—an index to organic metamorphism. US Geol Surv Prof Pap 995:1–27

    Google Scholar 

  • Erwin DH (1993) The Permo-Triassic extinction. Nature 367:231–236

    Article  Google Scholar 

  • Erwin DH, Bowring SA, Jin Y (2002) End-Permian mass extinctions: a review. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geol Soc Am Spec Pap 356:363–383

    Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic: the history of earth’s climate over the past 600 million years. Cambridge Univ. Press, Cambridge, pp 1–274

    Google Scholar 

  • Gallet Y, Krystyn L, Besse J, Saidi A, Ricou L-E (2000) New constraints on the Upper Permian and Lower Triassic geomagnetic polarity timescale from the Abadeh section (central Iran). J Geophys Res 105:2805–2815

    Article  Google Scholar 

  • Gullo M, Kozur H (1992) Conodonts from the pelagic deep-water Permian of central Western Sicily (Italy). Neues Jahrb Geol Paläontol Abh 184(2):203–234

  • Hallam A (1984) Pre-Quaternary sea-level changes. Ann Rev Earth Planet Sci 12:205–243

    Article  CAS  Google Scholar 

  • Hansen HJ, Lojen S, Toft P, Dolenec T, Tong J, Michaelsen P, Sarkar A (2000) Magnetic susceptibility and organic carbon isotopes of sediments across some marine and terrestrial Permo-Triassic boundaries. In: Yin H-F, Dickins JM, Shi GR, Tong J (eds) Permian-Triassic evolution of Tethys and Western Circum-Pacific. Elsevier Science BV, Amsterdam, pp 271–289

  • Heydari E, Hassandzadeh J, Wade WJ (2000) Geochemistry of central Tethyan Upper Permian and Lower Triassic strata, Abadeh region, Iran. Sediment Geol 137:85–99

    Article  CAS  Google Scholar 

  • Heydari E, Wade WJ, Hassanzadeh J (2001) Diagenetic origin of carbon and oxygen isotope compositions of Permian-Triassic boundary strata. Sediment Geol 143:191–197

    Article  CAS  Google Scholar 

  • Holser WT (1997) Geochemical events documented in inorganic carbon isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 132:173–182

    Article  Google Scholar 

  • Holser WT, Kaplan IR (1966) Isotope geochemistry of sedimentary sulfates. Chem Geol 1:93–135

    Article  CAS  Google Scholar 

  • Holser WT, Magaritz M (1992) Cretaceous/Tertiary and Permian/Triassic boundary events compared. Geochim Cosmochim Acta 56:3297–3309

    Article  CAS  Google Scholar 

  • Holser WT, Schönlaub H-P, Attrep M, Boeckelmann K, Klein P, Magaritz M, Orth CJ, Fenninger A, Jenny C, Kralik M, Mauritsch H, Pak E, Schramm J-M, Stattegger K, Schmöller R (1989) A unique geochemical record at the Permian/Triassic boundary. Nature 337:39–44

    Article  CAS  Google Scholar 

  • Hotinski RM, Bice KL, Kump LR, Najjar RG, Arthur MA (2001) Ocean stagnation and end-Permian anoxia. Geology 29:7–10

    Article  CAS  Google Scholar 

  • Iacumin P, Bocherens H, Mariotti A, Longinelli A (1996) Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate? Earth Planet Sci Lett 142:1–6

    Google Scholar 

  • Isozaki Y (1997) Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235–238

    Article  CAS  PubMed  Google Scholar 

  • James NP, Choquette PW (1990) Limestones–the meteoric diagenetic environment. In: McIlreath IA, Morrow DW (eds) Diagenesis. Geosci Can Reprint Series 4:35–73

    Google Scholar 

  • Jin Y-G, Wang Y, Wang W, Shang Q-H, Cao C-Q, Erwin DH (2000) Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289:432–436

    Article  CAS  PubMed  Google Scholar 

  • Kaiho K, Kajiwara Y, Nakano T, Miura Y, Kawahata H, Tazaki K, Ueshima M, Chen Z-Q, Shi GR (2001) End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29:815–818

    Article  CAS  Google Scholar 

  • Kamo SL, Czamanske GK, Amelin Y, Fedorenko VA, Davis DW, Trofimov VR (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214:75–91

    Article  CAS  Google Scholar 

  • Kampschulte A (2001) Schwefelisotopenuntersuchungen an strukturell substituierten Sulfaten in marinen Karbonaten des Phanerozoikums – Implikationen für die geochemische Evolution des Meerwassers und die Korrelation verschiedener Stoffkreisläufe. PhD Thesis, Ruhr-Universität, Bochum, pp 1–152

  • Kampschulte A, Strauss H (2004) The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol 204:255–286

    Article  CAS  Google Scholar 

  • Kampschulte A, Bruckschen P, Strauss H (2001) The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods: implications for coeval seawater, correlation with other geochemical cycles and isotope stratigraphy. Chem Geol 175:165–189

    Article  Google Scholar 

  • Knoll AH, Bambach RK, Canfield DE, Grotzinger JP (1996) Comparative Earth history and late Permian mass extinction. Science 273:452–457

    CAS  Google Scholar 

  • Koepnick RB, Denison RE, Burke WH, Hetherington EA, Dahl DA (1990) Construction of the Triassic and Jurassic portion of the Phanerozoic curve of seawater 87Sr/86Sr. Chem Geol 80:327–349

    CAS  Google Scholar 

  • Korte C (1999) 87Sr/86Sr-, δ18O- und δ13C-Evolution des triassischen Meerwassers: Geochemische und stratigraphische Untersuchungen an Conodonten und Brachiopoden. Bochumer geol u geotechn Arb 52, Bochum, pp 1–171

  • Korte C, Kozur HW, Bruckschen P, Veizer J (2003) Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochim Acta 67:47–62

    Article  CAS  Google Scholar 

  • Kozur HW (1995) Permian conodont zonation and its importance for the Permian stratigraphic standard scale. Geol Paläontol Mitt Innsbruck 20:165–205

  • Kozur HW (1998a) Some aspects of the Permian-Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary. Palaeogeogr Palaeoclimatol Palaeoecol 143:227–272

    Article  Google Scholar 

  • Kozur HW (1998b) Problems for evaluation of the scenario of the Permian-Triassic boundary biotic crisis and of its causes. Geol Croat 51/2:135–162

  • Kozur HW (2004) Pelagic uppermost Permian and the Permian-Triassic boundary in Iran. Hallesches Jb Geowiss B (in press)

  • Kozur HW, Mostler H, Rahimi-Yazd A (1975) Beiträge zur Mikropaläontologie permotriadischer Schichtfolgen. Teil II: Neue Conodonten aus dem Oberperm und der basalen Trias von Nord- und Zentraliran. Geol Paläont Mitt Innsbruck 5(3):1–23

  • Kozur HW, Leven EJ, Lozovskij VR, Pjatakova MV (1978) Rasclenenie po konodontam pogranicnych sloev permi i triasa Zakavkazja. Bjul MOIP, otd geol 1978(5):15–24

  • Krull ES, Retallack GJ, Campbell HJ, Lyon GL (2000) δ13Corg chemostratigraphy of the Permian-Triassic boundary in the Maitai Group, New Zealand: evidence for high-latitudinal methane release. N Z J Geol Geophys 43:21–32

    CAS  Google Scholar 

  • Kump LR (2003) The geochemistry of mass extinction. In: Mackenzie FT (ed) Sediments, diagenesis, and sedimentary rocks. Treatise of Geochemistry, vol. 7 (eds. Holland HD, Turekian KK). Elsevier-Pergamon, Amsterdam, pp 351–367

  • Lécuyer C, Grandjean P, Emig CC (1996) Determination of oxygen isotope fractionation between water and phosphate from living lingulids: potential application to paleoenvironmental studies. Palaeogeogr Palaeoclimatol Palaeoecol 126:101–108

    Article  Google Scholar 

  • Longinelli A, Nuti S (1973) Revised phosphate-water isotopic temperature scale. Earth Planet Sci Lett 19:373–376

    Article  CAS  Google Scholar 

  • Looy CV, Brugman WA, Dilcher DL, Visscher H (1999) The delayed resurgence of equatorial forests after the Permian-Triassic ecologic crisis. Proc Natl Acad Sci USA 96:13857–13862

    Article  CAS  PubMed  Google Scholar 

  • Magaritz M, Bär R, Baud A, Holser WT (1988) The carbon-isotope shift at the Permian/Triassic boundary in the Southern Alps is gradual. Nature 331:337–339

    Article  Google Scholar 

  • Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160

    CAS  Google Scholar 

  • Martin EE, Macdougall JD (1995) Sr and Nd isotopes at the Permian/Triassic boundary: a record of climate change. Chem Geol 125:73–99

    Article  CAS  Google Scholar 

  • Mii HS, Grossman EL, Yancey TE (1999) Carboniferous isotope stratigraphies of North America: implications for Carboniferous paleoceanography and Mississippian glaciation. Geol Soc Am Bull 111:960–973

    Article  CAS  Google Scholar 

  • Mii HS, Grossman EL, Yancey TE, Chuvashov B, Egorov A (2001) Isotopic records of brachiopod shells from the Russian Platform—evidence for the onset of mid-Carboniferous glaciation. Chem Geol 175:133–147

    Article  CAS  Google Scholar 

  • Morante R (1996) Permian and Early Triassic isotopic records of carbon and strontium in Australia and a scenario of events about the Permian–Triassic boundary. Histor Biol 11:289–310

    Google Scholar 

  • Mory AJ, Iasky RP, Glikson AY, Pirajno F (2000) Woodleigh, Carnarvon Basin, Western Australia: a new 120-km diameter impact structure. Earth Planet Sci Lett 177:119–128

    Article  CAS  Google Scholar 

  • Musashi M, Isozaki Y, Koike T, Kreulen R (2001) Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the Permo–Triassic boundary: evidence for 13C-depleted superocean. Earth Planet Sci Lett 191:9–20

    Article  CAS  Google Scholar 

  • Neretin LN, Volkov II, Böttcher ME, Grinenko VA (2001) A sulfur budget for the Black Sea anoxic zone. Deep-Sea Res I 48:2569–2593

  • Newton RJ, Pevitt EL, Wignall PB, Bottrell SH (2004) Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth Planet Sci Lett 218:331–345

    Google Scholar 

  • Oberhänsli H, Hsü KJ, Piasecki S, Weissert H (1989) Permian-Triassic carbon-isotope anomaly in Greenland and in the Southern Alps. Histor Biol 2:37–49

    Google Scholar 

  • O’Neil JR, Roe JL, Reinhardt E, Blake RE (1994) A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Isr J Earth Sci 43:203–212

    Google Scholar 

  • Peters KE, Moldowan JM (1993) The biomarker guide—interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall, New Jersey, pp 1–363

  • Radke M, Willsch H, Welte DH (1980) Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal Chem 52:406–411

    CAS  Google Scholar 

  • Raup DM (1991) A kill curve for Phanerozoic marine species. Paleobiology 17:37–48

    CAS  PubMed  Google Scholar 

  • Renne PR, Basu AR (1991) Rapid eruption of the Siberian traps flood basalts at the Permo-Triassic boundary. Science 253:176–179

    Google Scholar 

  • Renne PR, Zichao Z, Richards MA, Black MT, Basu AR (1995) Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science 269:1413–1416

    CAS  Google Scholar 

  • Retallack GJ (1995) Permian-Triassic Life crisis on land. Science 267:77–80

    CAS  Google Scholar 

  • Retallack GJ, Veevers JJ, Morante R (1996) Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants. Geol Soc Am Bull 108:195–207

    Article  CAS  Google Scholar 

  • Ross CA, Ross JRP (1987) Late Paleozoic sea levels and depositional sequences. In: Ross CA, Haman D (eds) Timing and depositional history of eustatic sequences: constraints on seismic stratigraphy. Cushman Found Foraminiferal Res Spec Publ 24:137–149

    Google Scholar 

  • Ross CA, Ross JPR (1995) Permian sequence stratigraphy. In: Scholle PA, Peryt TM, Ulmer-Scholle DS (eds) The Permian of northern Pangea, vol 1: paleogeography, paleoclimates, stratigraphy. Springer, Berlin Heidelberg New York, pp 98–123

  • Schwark L, Vliex M, Schaeffer P (1998) Geochemical characterization of Malm Zeta laminated carbonates from the Franconian Alb, SW-Germany (II). Org Geochem 29:1921–1952

    Article  CAS  Google Scholar 

  • Sepkoski JrJJ (1989) Periodicity in extinction and the problem of catastrophism in the history of life. J Geol Soc Lond 146:7–19

    Google Scholar 

  • Shanley JB, Pendall E, Kendall C, Stevens LR, Michel RL, Phillips PJ, Forester RM, Naftz DL, Liu B-L, Stern L, Wolfe BB, Chamberlain CP, Leavitt SW, Heaton THE, Mayer B, Cecil LD, Lyons WB, Katz BG, Betancourt JL, McKnight DM, Blum JD, Edwards TWD, House HR, Ito E, Aravena RO, Whelan JF (1998) Isotopes as indicators of environmental change. In: Kendall C, McDonnell JJ (eds) Isotopes tracers in catchment hydrology. Elsevier Science BV, Amsterdam, pp 761–816

  • Sheng J-Z, Rui L, Chen C-Z (1986) Permian and Triassic sedimentary facies and paleogeography of South China. In: Nakazawa K, Dickins JM (eds) The Tethys – her paleogeography and paleobiogeography from Paleozoic to Mesozoic. Univ. Press, Tokyo, pp 59–81

  • Spötl C, Vennemann TW (2003) Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun Mass Spectrom 17:1004–1006

    PubMed  Google Scholar 

  • Stampfli GM, Borel GD (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33

    Article  CAS  Google Scholar 

  • Stanley SM (1988) Paleozoic mass extinctions: shared patterns suggest global cooling as a common cause. Am J Sci 288:334–352

    Google Scholar 

  • Sweet WC, Mei S-L (1999) Conodont succession of Permian Lopingian and basal Triassic in Northwest Iran. In: Yin H-F, Tong J (eds) Proceedings of the international conference on Pangea and the Paleozoic-Mesozoic transition. China University of Geosciences press, Wuhan, Hubei, pp 43–47

  • Taraz H, Golshani F, Nakazawa K, Shimizu D, Bando Y, Ishii K, Murata M, Okimura Y, Sakagami S, Nakamura K, Tokuoka T (1981) The Permian and the Lower Triassic systems in Abadeh region, Central Iran. Mem Fac Sci, Kyoto Univ, Ser Geol Mineral 47(2):61–133

  • Veizer J, Compston W (1974) 87Sr/86Sr composition of seawater during the Phanerozoic. Geochim Cosmochim Acta 38:1461–1484

    Article  CAS  Google Scholar 

  • Vennemann TW, Fricke HC, Blake RE, O’Neil JR, Colman A (2002) Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4. Chem Geol 185:321–336

    Article  CAS  Google Scholar 

  • Visscher H, Brinkhuis H, Dilcher DL, Elsik WC, Eshet Y, Looy CV, Rampino MR, Traverse A (1996) The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci USA 93:2155–2158

    Article  CAS  PubMed  Google Scholar 

  • Wang C-Y, Wang Z-H (1979) Permian conodonts from the Longtan Formation and Changhsing Formation of Changxing, Zheijiang and their stratigraphical and paleoecological significance. Selected Papers 1st Convention Micropaleontol Soc China, Beijing, pp 114–120

  • Wang K, Geldsetzer HHJ, Krouse HR (1994) Permian-Triassic extinction: organic δ13C evidence from British Columbia, Canada. Geology 22:580–584

    Article  CAS  Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  CAS  Google Scholar 

  • Wignall PB, Hallam A (1992) Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr Palaeoclimatol Palaeoecol 93:21–46

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158

    CAS  PubMed  Google Scholar 

  • Wignall PB, Morante R, Newton R (1998) The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geol Mag 135:47–62

    Article  CAS  Google Scholar 

  • Wilde P, Berry WBN (1982) Progressive ventilation of the oceans: potential for Return to anoxic conditions in the post-Paleozoic. In: Schlanger SO, Cita MB (eds) Nature and origin of Cretaceous carbon-rich facies. Academic Press, New York, pp 209–224

  • Xu D-Y, Yan Z (1993) Carbon isotope and iridium event markers near the Permian/Triassic boundary in the Meishan section, Zhejiang province, China. Palaeogeogr Palaeoclimatol Palaeoecol 104:171–176

    Article  Google Scholar 

  • Yazdi M, Shirani M (2002) First research on marine and non-marine sedimentary sequences and micropaleontologic significance across Permian/Triassic boundary in Iran (Isfahan and Abadeh). J China Univ Geosci 13(2):172–176

    Google Scholar 

  • Yin H-F, Huang S-J, Zhang K-X, Hansen H-J, Yang F-Q, Ding M-H, Bie X-M (1992) The effects of volcanism on the Permo-Triassic mass extinction in South China. In: Sweet WC, Yang ZY, Dickins JM, Yin H-F (eds) Permo-Triassic events in the eastern Tethys. Cambridge Univ Press, Cambridge, 146–157

  • Zachos JC, Arthur MA, Dean WE (1989) Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337:61–64

    Article  Google Scholar 

  • Zhao J-K, Sheng J-Z, Yao Z-Q, Liang X-L, Chen C-Z, Rui L, Liao Z-T (1981) The Changhsingian and Permian-Triassic boundary of South China. Bull Nanjing Inst Geol Palaeontol Acad Sinica 2:1–112

    Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Deutsche Forschungsgemeinschaft (Le 469/10–1 and Ve 112/14–3) and by the Deutsche Akademie der Naturforscher Leopoldina (BMBF-LPD 9901/838). The sampling in Iran, carried out by the second author, was supported by the Deutsche Forschungsgemeinschaft and by the Geological Survey of Iran in Tehran and Täbris, particularly by B. Hamdi, H. Partoazar and B. Sedghi. The analytical work of C. Spötl (Innsbruck), D. Buhl and U. Schulte (both Bochum), D. Lutz (Erlangen), and technical assistance of B. Raczek (Bochum), M. Wimmer (Innsbruck), and A. Fugmann (Münster) is greatly appreciated. We thank H. Weissert and P. Wignall for review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Korte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korte, C., Kozur, H.W., Joachimski, M.M. et al. Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. Int J Earth Sci (Geol Rundsch) 93, 565–581 (2004). https://doi.org/10.1007/s00531-004-0406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0406-7

Keywords

Navigation