Skip to main content

Advertisement

Log in

Zircon age and Nd–Hf isotopic composition of the Yunnan Tethyan belt, southwestern China

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Baoshan block of the Tethyan Yunnan, southwestern China, is considered as northern part of the Sibumasu microcontinent. Basement of this block that comprises presumably greenschist-facies Neoproterozoic metamorphic rocks is covered by Paleozoic to Mesozoic low-grade metamorphic sedimentary rocks. This study presents zircon ages and Nd–Hf isotopic composition of granites generated from crustal reworking to reveal geochemical feature of the underlying basement. Dating results obtained using the single zircon U–Pb isotopic dilution method show that granites exposed in the study area formed in early Paleozoic (about 470 Ma; Pingdajie granite) and in late Yanshanian (about 78–61 Ma, Late Cretaceous to Early Tertiary; Huataolin granite). The early Paleozoic granite contains Archean to Mesoproterozoic inherited zircons and the late Yanshanian granite contains late Proterozoic to early Paleozoic zircon cores. Both granites have similar geochemical and Nd–Hf isotopic charateristics, indicating similar magma sources. They have whole-rock T DM(Nd) values of around 2,000 Ma and zircon T DM(Hf) values clustering around 1,900–1,800 and 1,600–1,400 Ma. The Nd–Hf isotopic data imply Paleoproterozoic to Mesoproterozoic crustal material as the major components of the underlying basement, being consistent with a derivation from Archean and Paleoproterozoic terrains of India or NW Australia. Both granites formed in two different tectonic events similarly originated from intra-crustal reworking. Temporally, the late Yanshanian magmatism is probably related to the closure of the Neotethys ocean. The early Paleozoic magmatism traced in the Baoshan block indicates a comparable history of the basements during early Paleozoic between the SE Asia and the western Tethyan belt, such as the basement outcrops in the Alpine belt and probably in the European Variscides that are considered as continental blocks drifting from Gondwana prior to or simultaneously with those of the SE Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barley ME (1997) The Pilbara Craton. In: De Wit MJ, Ashwal LD (eds) Greenstone belts. Clarendon, Oxford, pp 657–663

    Google Scholar 

  • Blichert-Toft J, Albarede F (1997) The Lu–Hf geochemistry of chondrites and evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Chen F, Hegner E, Todt W (2000) Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: evidence for a Cambrian magmatic arc. Int J Earth Sci 88:791–802

    Article  Google Scholar 

  • Chen F, Satir M, Ji J-Q, Zhong D-L (2002a) Nd–Sr–Pb isotopic composition of the Cenozoic volcanic rocks from western Yunnan, China: evidence for enriched mantle source. J Asian Earth Sci 21:39–45

    Article  Google Scholar 

  • Chen F, Siebel W, Satir M (2002b) Zircon U–Pb and Pb-isotope fractionation during stepwise HF-acid leaching and chronological implications. Chem Geol 191:155–164

    Article  Google Scholar 

  • Chen F, Siebel W, Satir M, Terzioglu N, Saka K (2002c) Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. Int J Earth Sci 91:469–481

    Article  Google Scholar 

  • Chu N-C, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German C, Bayon G, Burton M (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal Atom Spectr 17:1567–1574

    Article  Google Scholar 

  • Clemens JD (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61:1–18

    Article  Google Scholar 

  • Dobmeier CJ, Raith MM (2003) Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. Geol Soc Lond, Spec Publ 206:145–168

  • Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U-Pb zircon ages and structural development of metagranitoids of the Tepla crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). Geol Rundsch 87:135–149

    Article  Google Scholar 

  • Fan P-F (1978) Outline of the tectonic evolution of southwestern China. Tectonophysics 45:261–267

    Article  Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Paper 230:67–90

    Google Scholar 

  • Gansser A (1981) The geodynamic history of the Himalaya. In: Gupta HK, Delany FM (eds) Zagros-Hindukush-Himalaya: geodynamic evolution. American Geophysical Union, pp 11–21

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13

    Article  Google Scholar 

  • Hegner E, Kröner A (2000) Review of Nd isotopic data and xenocrystic and detrital zircon ages from the pre-Variscan basement in the eastern Bohemian Massif: speculations on palinspastic reconstructions. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modeling in the Variscan belt. Geol Soc Lond Spec Publ 179:113–129

  • Hutchison CS (1993) Gondwana and Cathaysian blocks, Palaeotethys sutures and Cenozoic tectonics in South-east Asia. Geol Rundsch 82:388–405

    Google Scholar 

  • Jain SC, Yedekar DB, Nair KKK (1991) Central India shear zone: a major Precambrian crustal boundary. J Geol Soc India 37:521–531

    Google Scholar 

  • Jin X-C (2002) Permo-Carboniferous sequences of Gondwana affinity in southwest China and their paleographic implications. J Asian Earth Sci 20:633–646

    Article  Google Scholar 

  • Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46:637–649

    Article  Google Scholar 

  • Kröner A, Hegner E (1998) Geochemistry, single zircon ages and Sm–Nd systematics of granitoid rocks from the Gory Sowie (Owl Mts), Polish West Sudetes; evidence for early Palaeozoic arc-related plutonism. J Geol Soc Lond 155:711–724

    Google Scholar 

  • Kröner A, Jaeckel P, Reischmann T, Kroner U (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerske Hory, Krkonose Mountains and Orlice–Sneznik Complex). Int J Earth Sci 90:304–324

    Article  Google Scholar 

  • Li X-Z, Jiang X-S, Sun Z-M, Shen G-F, Du D-X (2002) The collisional orogenic processes of the Nujiang–Lancangjiang–Jinshajiang area, southwestern China. Geological Press House, Beijing, pp 1–213

    Google Scholar 

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138

    Article  Google Scholar 

  • Ludwig KR (1988) Pbdat for MS-Dos—a computer program for IBM-PC compatibles for processing raw Pb–U–Th isotope data. US Geol Surv, Open-file Rep 88–542:1–37

    Google Scholar 

  • Ludwig KR (2001) Isoplot/Ex, rev 2.49: a geochronological toolkit for Microsoft Excel. Berkeley Geochron. Center Spec Publ No. 1a:1–58

  • Machado N, Simonetti A (2001) U–Pb dating and Hf isotopic composition of zircon by laser ablation MC-ICP-MS, In: Sylvester P (ed) Laser ablation-ICPMS in the earth sciences: principles and applications. St John’s, Newfoundland, Mineral Assoc Canada 29:121–146

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Bull Am Geol Soc 101:635–643

    Article  Google Scholar 

  • Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374

    Article  Google Scholar 

  • Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196:309–337

    Article  Google Scholar 

  • Mazumder R, Bose PK, Sarkar S (2000) A commentary on the tectono-sedimentary records of the pre-2.0 Ga continental growth of India vis-à-vis a possible pre-Gondwana Afro-Indian super-continent. J Asian Earth Sci 30:201–217

    Google Scholar 

  • Metcalfe I (1988) Origin and assembly of Southeast Asian continental terranes. In: Audley-Charles MG, Hallam A (eds) Gondwana and Tethys. Geol Soc Lond, Spec Publ 37:101–118

  • Metcalfe I (1996a) Pre-Cretaceous evolution of SE Asian terranes. In: Hall R, Blundell D (eds) Tectonic evolution of Southeast Asia. Geol Soc Spec Publ 106:97–122

  • Metcalfe I (1996b) Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Austr J Earth Sci 43:605–623

    Article  Google Scholar 

  • Metcalfe I (1998) Palaeozoic and Mesozoic geological evolution of the SE Asian region, multidisciplinary constraints and implications for biogeography. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE Asia. Backhuys Publishers, Amsterdam, pp 25–41

    Google Scholar 

  • Metcalfe I (2002) Permian tectonic framework and palaeogeography of SE Asia. J Asian Earth Sci 20:551–566

    Article  Google Scholar 

  • Metcalfe I (2006) Palaeozoic and Mesozic tectonic evolution and palaeogeography of East Asian crustal fragmets: the Korean Peninsula inI context. Gondwana Res 9:24–46

    Article  Google Scholar 

  • Myers JS, Swagers C (1997) The Yilgarn Craton. In: De Wit MJ, Ashwal LD (eds) Greenstone belts. Clarendon, Oxford, pp 640–656

    Google Scholar 

  • Neumayr M (1885) Die geographische Verbreitung der Juraformation. Denkschr Kais Koenig Akad Wiss Wien, math-nat Cl 15:57–114

    Google Scholar 

  • Oliver GJH, Corfu F, Krogh TE (1993) U-Pb ages from SW poland, evidence for a Caledonia structure zone between Baltica and Gondwana. J Geol Soc Lond 150:355–369

    Google Scholar 

  • Parrish RR (1987) An improved micro-capsule for zircon dissolution in U–Pb geochronology. Chem Geol 66:99–102

    Google Scholar 

  • Pearce JA (1996) Sources and settings of granitic rocks. Episode 19:120–125

    Google Scholar 

  • Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Pidgeon RT, Nemchin AA, Hitchen GJ (1998) Internal structures of zircons from Archaean granites from the Darling Range Batholith; implications for zircon stability and the interpretation of zircon U–Pb ages. Contrib Mineral Petrol 132:288–299

    Article  Google Scholar 

  • Pin C (1990) Variscan oceans—ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177:215–227

    Article  Google Scholar 

  • Poller U, Liebetrau V, Todt W (1997) U–Pb single-zircon dating under cathodoluminescence control (CLC-method): application to polymetamorphic orthogneisses. Chem Geol 139:287–297

    Article  Google Scholar 

  • Powell CMcA, Johnson BD (1980) Constraints on the Cenozoic position of Sundaland. Tectonophysics 63:91–109

    Article  Google Scholar 

  • von Quadt A (1997) U–Pb zircon and Sr–Nd–Pb whole-rock investigations from the continental deep drilling (KTB). Geol Rundsch 86(supp l):258–271

    Article  Google Scholar 

  • von Raumer JF (1998) The Palaeozoic evolution in the Alps: from Gondwana to Pangea. Geol Rundsch 87:407–435

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM, Borel G, Bussy F (2002) Reorganization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52

    Article  Google Scholar 

  • Rowley DB (1996) Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet Sci Lett 145:1–13

    Article  Google Scholar 

  • Sengör AMC, Natal’in BA (1996) Palaeotectonics of Asia, fragments of a synthesis. In: Yin A, Harrison TM (eds) Tectonic evolution of Asia. Cambridge University Press, Cambridge, pp 486–640

    Google Scholar 

  • Sengör AMC, Altiner D, Cin A, Ustaomer T, Hsü KJ (1988) Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. In: Audley-Charles MG, Hallam A (Eds. Gondwana and Tethys. Geol Soc Spec Publ 37:119–181

  • Shi G-R, Archbold NW (1995) Permian brachiopod faunal sequence of the Shan-Thai terrane: biostratigraphy, palaeobiogeographical affinities and plate tectonic/palaeoclimatic implications. J SE Asian Earth Sci 11:177–187

    Article  Google Scholar 

  • Shi G-R, Archbold NW (1998) Permian marine biogeography of SE Asia. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE Asia. Backhuys Publishers, Amsterdam, pp 57–72

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet Sci Lett 127:30–45

    Google Scholar 

  • Suess E (1893) Are great oceans depths permanent? Nat Sci 2:180–187

    Google Scholar 

  • Sun SS (1982) Chemical composition and origin of the Earth’s primitive mantle. Geochim Cosmochim Acta 46:179–192

    Article  Google Scholar 

  • Tapponier P, Mercier JL, Proust F, Andrieux J, Armijo R, Bassoullet JP, Burnel M, Burg JP, Colchen M, Dupre B, Girardeau J, Marcoux J, Mascle G, Matte P, Nicolas A, Li TD (1981) The Tibetan side of the India-Eurasia collision. Nature 294:405–410

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, pp 1–312

    Google Scholar 

  • Ueno K (2000) Permian fusulinacean faunas of the Sibumasu and Baoshan blocks, implications for the paleogeographic reconstruction of the Cimmerian continent. Geosci J 4:160–163

    Google Scholar 

  • Van Kranendonk MJ, Collins WJ (1998) Timing and tectonic significance of Late Archaean, sinistral strike-slip deformation in the Central Pilbara Structural Corridor, Pilbara Craton, Western Australia. Precamb Res 88:207–232

    Article  Google Scholar 

  • Veevers JJ, Saeed A, Belousova EA, Griffin WL (2005) U–Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth Sci Rev 68:245–279

    Google Scholar 

  • Wang X-D, Ueno K, Mizuno Y, Sugiyama T (2001) Late Paleozoic faunal, climatic, and geographic changes in the Baoshan Block as a Gondwana-derived continental fragment in southwest China. Palaeogeogr Palaeoclimat Palaeoecol 170:197–218

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23

    Article  Google Scholar 

  • Wingate MTD, Evans DAD (2003) Palaeomagnetic constraints on the Proterozoic tectonic evolution of Australia. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. Geol Soc Lond Spec Publ 206:77–91

  • Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209: 121–135

    Article  Google Scholar 

  • Wopfner H (1996) Gondwana origin of the Baoshan and Tengchong terrenes of west Yunnan. In: Hall R, Blundell D (eds) Tectonic evolution of Southeast Asia. Geol Soc Spec Publ 106:539–547

  • Wu H, Boulter CA, Ke B, Stow DAV, Wang Z (1995) The Changning-Menglian suture zone; a segment of the major Cathaysian-Gondwana divide in Southeast Asia. Tectonophysics 242:267–280

    Article  Google Scholar 

  • Xu P, Wu F-Y, Xie L-W, Yang Y-H (2004) Hf isotopic composition of the standard zircons for the U–Pb dating. Chin Bull Sci 49:1042–1410

    Google Scholar 

  • Yedekar DB, Jain SC, Nair KKK (1990) The central Indian collision suture, Precambrian central India. Geol Soc India, Spec Publ 28:1–27

    Google Scholar 

  • Yunnan Geological Survey (1981) Guidebook for geological map of Yunnan Province (1: 500 000). pp 1–122

  • Zhong D-L (1998) Paleo-Tethyan orogenic belt in the western parts of the Sichuan and Yunnan Provinces. Science Press, Beijing, pp 231

    Google Scholar 

  • Zhong D-L, Ji J-Q, Hu S-L (1999) Subduction age of Neo-Tethys oceanic crust in Southwest Yunnan, China: laser micro-area 40Ar–39Ar dating. Chin Sci Bull 44:2196–2199

    Article  Google Scholar 

  • Zhu B-Q, Mao C-X, Lugmair GW, MacDougall JD (1983) Isotopic and geochemical evidence for the origin of Plio-Pleistocene volcanic rocks near the Indo-Eurasian collisional margin at Tengchong, China. Earth Planet Sci Lett 65:263–275

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NSFC project Nos. 40372106, 40525007 and 40421202). Metcalfe I. and Koralay E. are gratefully acknowleged for constructive comments to improve the manuscript. Sincere thanks are given to Liu Yan for help during field work, Ma Yuguan and Xie Liewen for assistance with zircon CL and Hf isotope analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fukun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Li, XH., Wang, XL. et al. Zircon age and Nd–Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. Int J Earth Sci (Geol Rundsch) 96, 1179–1194 (2007). https://doi.org/10.1007/s00531-006-0146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0146-y

Keywords

Navigation