Skip to main content
Log in

Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: implications for adakite and magmas from the MASH Zone

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A garnet-bearing tonalitic porphyry from the Achiq Kol area, northeast Tibetan Plateau has been dated by SHRIMP U-Pb zircon techniques and gives a Late Triassic age of 213 ± 3 Ma. The porphyry contains phenocrysts of Ca-rich, Mn-poor garnet (CaO > 5 wt%; MnO < 3 wt%), Al-rich hornblende (Al2O3 ~ 15.9 wt%), plagioclase and quartz, and pressure estimates for hornblende enclosing the garnet phenocrysts yield values of 8–10 kbar, indicating a minimum pressure for the garnet. The rock has SiO2 of 60–63 wt%, low MgO (<2.0 wt%), K2O (<1.3 wt%), but high Al2O3 (>17 wt%) contents, and is metaluminous to slightly peraluminous (ACNK = 0.89–1.05). The rock samples are enriched in LILE and LREE but depleted in Nb and Ti, showing typical features of subduction-related magmas. The relatively high Sr/Y (~38) ratios and low HREE (Yb < 0.8 ppm) contents suggest that garnet is a residual phase, while suppressed crystallization of plagioclase and lack of negative Eu anomalies indicate a high water fugacity in the magma. Nd–Sr isotope compositions of the rock (εNdT = −1.38 to −2.33; 87Sr/86Sri = 0.7065–0.7067) suggest that both mantle- and crust-derived materials were involved in the petrogenesis, which is consistent with the reverse compositional zoning of plagioclase, interpreted to indicate magma mixing. Both garnet phenocrysts and their ilmenite inclusions contain low MgO contents which, in combination with the oxygen isotope composition of garnet separates (+6.23‰), suggests that these minerals formed in a lower crust-derived felsic melt probably in the MASH zone. Although the rock samples are similar to adakitic rocks in many aspects, their moderate Sr contents (<260 ppm) and La/Yb ratios (mostly 16–21) are significantly lower than those of adakitic rocks. Because of high partition coefficients for Sr and LREE, fractionation of apatite at an early stage in the evolution of the magma may have effectively decreased both Sr and LREE in the residual melt. It is suggested that extensive crystallization of apatite as an early phase may prevent some arc magmas from evolving into adakitic rocks even under high water fugacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ague JJ (1997) Thermodynamic calculation of emplacement pressures for batholithic rocks, California: implications for the aluminum-in-hornblende barometer. Geology 25:563–566. doi:10.1130/0091-7613(1997)025<0563:TCOEPF>2.3.CO;2

    Article  Google Scholar 

  • Anderson JL (1996) Status of thermobarometry in granitic batholith. Trans R Soc Edinb Earth Sci 87:125–138

    Google Scholar 

  • Anderson DL (2006) Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 416:7–22. doi:10.1016/j.tecto.2005.07.011

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539. doi:10.1093/petrology/egi084

    Article  Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146. doi:10.1038/362144a0

    Article  Google Scholar 

  • Bach P, Malpas J, Smith IEM (2003) A petrogenetic link between high-MgO and garnet-bearing andesites—a Setouchi analogue from the Eastern volcanic belt in Northland, New Zealand? Geochim Cosmochim Acta 67:A30–A30. doi:10.1016/S0016-7037(03)00304-1 Suppl

    Article  Google Scholar 

  • Bandrés A, Eguíluz L, Pin C, Paquette JL, Ordóňez B, Le Fèvre B et al (2004) The northern Ossa-Morena Cadomian batholith (Iberian Massif): magmatic arc origin and early evolution. Int J Earth Sci 93:860–885. doi:10.1007/s00531-004-0423-6

    Article  Google Scholar 

  • Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemite. Dacite and related rocks. Elsevier, Amsterdam, pp 1–12

    Google Scholar 

  • Bea F, Montero P (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133–1153. doi:10.1016/S0016-7037(98)00292-0

    Article  Google Scholar 

  • Behn MD, Kelemen PB (2006) Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J Geophys Res Solid Earth 111:B11207. doi:10.1029/2006JB004327

    Article  Google Scholar 

  • Berger J, Féménias O, Coussaert N, Mercier JCC, Demaiffe D (2007) Cumulating processes at the crust-mantle transition zone inferred from Permian mafic-ultramafic xenoliths (Puy Beaunit, France). Contrib Mineral Petrol 153:557–575. doi:10.1007/s00410-006-0162-8

    Article  Google Scholar 

  • Bian QT, Li DH, Pospelov I, Yin LM, Li HS, Zhao DS et al (2004) Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. J Asian Earth Sci 23:577–596. doi:10.1016/j.jseaes.2003.09.003

    Article  Google Scholar 

  • Birch WD, Gleadow JW (1974) The genesis of garnet and Cordierite in acid volcanic rocks: evidence from the Cerberean Cauldron, Central Victoria, Australia. Contrib Mineral Petrol 45:1–13. doi:10.1007/BF00371133

    Article  Google Scholar 

  • Bryant JA, Yogodzinski GM, Churikova TG (2007) Melt-mantle interactions beneath the Kamchatka arc: evidence from ultramafic xenoliths from Shiveluch volcano. Geochem Geophys Geosyst 8:Q04007. doi:10.1029/2006GC001443

    Article  Google Scholar 

  • Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51. doi:10.1007/s004100050467

    Article  Google Scholar 

  • Chang C, Chen N, Coward MP, Deng W, Dewey JF, Gansser A et al (1986) Preliminary conclusions of the Royal society and Academia Sinica 1985 geotraverse of Tibet. Nature 323:501–507. doi:10.1038/323501a0

    Article  Google Scholar 

  • Chazot G, Menzies MA, Harte B (1996) Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: implications for wet melting of the lithospheric mantle. Geochim Cosmochim Acta 60:423–437. doi:10.1016/0016-7037(95)00412-2

    Article  Google Scholar 

  • Chen NS, Wang XY, Zhang HF, Sun M, Li XY, Chen Q (2005) Geochemistry and Nd–Sr–Pb isotopic compositions of granitoids from Qaidam and Oulongbuluke micro-blocks, NW China: constraints on basement nature and tectonic affinity. Earth Sci J China Univ Geosci 32:7–21

    Google Scholar 

  • Chen NS, Li XY, Zhang KX, Wang GC, Zhu YH, Hou GJ et al (2006) Lithological characteristics of the Baishahe formation to the South of Xiangride Town, Eastern Kunlun Mountains and its age constrained from Zircon Pb–Pb dating. Geol Sci Technol Inf 25:1–7

    Google Scholar 

  • CIGMR (Chengdu Institute of Geology and Mineral Resources) (1988) Notes for the geological map of Tibet-Qinghai Plateau and adjacent areas (1:1,500,000). Geological Publication House, Beijing, pp 1–60

  • Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from Lunar breccia 73217 using a sensitive high massresolution ion microprobe. J Geophys Res 89B:525–534. doi:10.1029/JB089iS02p0B525

    Article  Google Scholar 

  • Condie KC (2005) TTGs and adakites: are they both slab melts? Lithos 80:33–44. doi:10.1016/j.lithos.2003.11.001

    Article  Google Scholar 

  • Conrad WK, Nicholls LA, Wall VJ (1988) Water-saturated and unsaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand and other occurrence. J Petrol 29:765–803

    Google Scholar 

  • Cowgill E, Yin A, Harrison TM, Wang X-F (2003) Reconstruction of the Altyn Tagh fault based on U–Pb geochronology: role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. J Geophys Res 108:2346. doi:10.1029/2002JB002080

    Article  Google Scholar 

  • Day RA, Green TH, Smith IEM (1992) The Origin and Significence of garnet phenocrysts and garnet-bearing xenoliths in Miocene calc-alkaline volcanics from Northland, New Zealand. J Petrol 33:125–161

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665. doi:10.1038/347662a0

    Article  Google Scholar 

  • Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern Qinghai-Xizang Plateau (in Chinese with English abstract). Geological Publishing House, Beijing, pp 1–180

    Google Scholar 

  • Dewey JF, Shackleton RS, Chang CF, Sun YY (1988) The tectonic evolution of the Tibetan Plateau. Philos Trans R Soc Lond 327:379–413. doi:10.1098/rsta.1988.0135

    Article  Google Scholar 

  • Dufek J, Bergantz GW (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt-crust interaction. J Petrol 46:2167–2195. doi:10.1093/petrology/egi049

    Article  Google Scholar 

  • Eiler JM, Schiano P, Valley JW, Kita NT, Stolper EM (2007) Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem Geophys Geosyst 8:Q09012–00. doi:10.1029/2006GC001503

    Article  Google Scholar 

  • Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840. doi:10.1038/nature00799

    Article  Google Scholar 

  • Franchini M, López-Escobar L, Schalamuk IBA, Meinert L (2003) Magmatic characteristics of the Paleocene Cerro Nevazón region and other Late Cretaceous to Early Tertiary calc-alkaline subvolcanic to plutonic units in the Neuquén Andes, Argentina. J S Am Earth Sci 16:399–421. doi:10.1016/S0895-9811(03)00103-2

    Article  Google Scholar 

  • Garrido CJ, Bodinier J-L, Burg J-P, Zeilinger G, Hussain SS, Dawwood H et al (2006) Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan Paleo-arc complex (northern Pakistan): implications for Intra-crustal differentiation of island arcs and generation of continental crust. J Petrol 47:1873–1914. doi:10.1093/petrology/egl030

    Article  Google Scholar 

  • Gehrels GE, Yin A, Wang X (2003b) Magmatic history of the northeastern Tibetan Plateau. J Geophys Res 108(B9):2423. doi:10.1029/2002JB001876

    Google Scholar 

  • Gehrels GE, Yin A, Wang X-F (2003a) Detrital zircon geochronology of the northeastern Tibetan plateau. Geol Soc Am Bull 115:881–896. doi:10.1130/0016-7606(2003)115<0881:DGOTNT>2.0.CO;2

    Article  Google Scholar 

  • Gilbert JS, Rogers NW (1989) The significance of garnet in the Permo-carboniferous volcanic rocks of the Pyrenees. J Geol Soc London 146:477–490. doi:10.1144/gsjgs.146.3.0477

    Article  Google Scholar 

  • Green TH (1977) Garnet in Silicic liquids and its possible use as a P–T indicator. Contrib Mineral Petrol 65:59–67. doi:10.1007/BF00373571

    Article  Google Scholar 

  • Green TH (1992) Experimental phase equilibrium stdies of garnet-bearing I-type volcanics and high-level intrusives from Northland, New Zealand. Trans R Soc Edinb Earth Sci 83:429–438

    Google Scholar 

  • Greene AR, DeBari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna arc section, South–Central Alaska. J Petrol 47:1051–1093. doi:10.1093/petrology/egl002

    Article  Google Scholar 

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt Shasta region, N California. Contrib Mineral Petrol 251:229–250

    Google Scholar 

  • Harangi SZ, Downes H, Kósa L, Szabó CS, Thirlwall MF, Mason PRD et al (2001) Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin (Eastern-Central Europe): geochemistry, petrogenesis and geodynamic implications. J Petrol 42:1813–1843. doi:10.1093/petrology/42.10.1813

    Article  Google Scholar 

  • Hawthorne FC (1981) The crystal chemistry of the amphiboles. In: Veblen DR (ed) Amphiboles and other hydrous pyriboles—mineralogy. Mineralogical Society of America, Reviews in Mineralogy 9 m, pp 1–140

  • Hermann J, Müntener O, Trommsdorff V, Hansmann W (1997) Fossil crust-to-mantle transition, Val Malenco (Italian Alps). J Geophys Res 102:20,123–20,132. doi:10.1029/97JB01510

  • Hibbard MJ (1995) Petrography to petrogenesis. Prentice Hall, Englewood Cliffs, pp 1–586

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489. doi:10.1007/BF00372365

    Article  Google Scholar 

  • Holdaway MJ, Mukhopadhyay B, Dyar MD, Guidotti CV, Dutrow BL (1997) Garnet-biotite geothermometry revised: new Margules parameters and a natural specimen data set from Maine. Am Mineral 82:582–595

    Google Scholar 

  • Holland T, Blundy J (1994) Nonideal interactions in clacic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447. doi:10.1007/BF00310910

    Article  Google Scholar 

  • Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains. In: Jiang C, Yang J, Feng B, Zhu Z, Zhao M, Chai Y, Shi X, Wang H, Hu J (eds) Opening closing tectonics of Kunlun Shan. Geological Memoirs, Series 5, Number 12, pp 205–217. Geological Publishing House, Beijing, China

  • Kawabata H, Shuto K (2005) Magma mixing recorded in intermediate rocks associated with high-Mg andesites from the Setouchi volcanic belt, Japan: implications for Archean TTG formation. J Volcanol Geotherm Res 140:241–271. doi:10.1016/j.jvolgeores.2004.08.013

    Article  Google Scholar 

  • Kawabata H, Takafuji N (2005) Origin of garnet crystals in calc-alkaline volcanic rocks from the Setouchi volcanic belt, Japan. Mineral Mag 69:951–971. doi:10.1180/0026461056960301

    Article  Google Scholar 

  • Kleinhanns IC, Kramers JD, Kamber BS (2003) Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa. Contrib Mineral Petrol 145:377–389. doi:10.1007/s00410-003-0459-9

    Article  Google Scholar 

  • Lan CL, Wu J, Li JL, Yu LJ, Li HS, Wang YT (2000) Discovery of early Carboniferous radiolarians in Muztag ophiolitic mélange, East Kunlun, Xinjiang (in Chinese with English abstract). Chin J Geol 37:104–106 in Chinese with English abstract

    Google Scholar 

  • Lee CTA, Cheng X, Horodyskyj U (2006) The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada California. Contrib Mineral Petrol 151:222–242. doi:10.1007/s00410-005-0056-1

    Article  Google Scholar 

  • Li XH (1997) Geochemistry of the Longsheng Ophiolite from the southern margin of Yangtze Craton, SE China. Geochem J 31:323–337

    Google Scholar 

  • Li YJ, Jia CZ, Hao J, Wang ZM, Zheng DM, Peng GX (2000) Radiolarian fauna found from Tieshidas Group in East Kunlun. Chin Sci Bull 45:943–946. doi:10.1007/BF02887089

    Article  Google Scholar 

  • Liu CD, Mo XX, Luo ZH, Yu XH, Chen HW, Li SW et al (2003) Pb–Sr–Nd–O isotope characteristics of granitoids in East Kunlun Orogenic Belt (in Chinese with English abstract). Acta Geosci Sin 24:584–588

    Google Scholar 

  • Liu JB, Ye K (2004) Transformation of garnet epidote amphibolite to eclogite, western Dabie Mountains, China. J Metamorph Geol 22:383–394. doi:10.1111/j.1525-1314.2004.00520.x

    Article  Google Scholar 

  • Liu YJ, Genser J, Neubauer F, Jin W, Ge XH, Handler R et al (2005) Ar-40/Ar-39 mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics 398:199–224. doi:10.1016/j.tecto.2005.02.007

    Article  Google Scholar 

  • Ludwig KR (2001) Users Manual for a geochronological toolkit for Microsoft Excel, Berkeley Geochronology Center. Spec Publ 1a:59

    Google Scholar 

  • Luo ZH, Deng JF, Cao YQ, Guo ZF, Mo XX (1999) On Late Paleozoic-Early Mesozoic volcanism and regional tectonic Evolution of Eastern Kunlun, Qinghai Province (in Chinese with English abstract). Geoscience 13:51–56

    Google Scholar 

  • Luo ZH, Ke S, Cao YQ, Deng JF, Zhan HW (2002) Late Indosinian mantle-derived magmatism in the East Kunlun (in Chinese with English abstract). Geol Bull China 21:292–297

    Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab-melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593. doi:10.1016/j.epsl.2005.12.034

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429. doi:10.1016/S0024-4937(98)00076-0

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG). Lithos 79:1–24. doi:10.1016/j.lithos.2004.04.048

    Article  Google Scholar 

  • Mason DR, McDonald JA (1978) Intrusive rocks and porphyry copper occurrence of the Papua New Guinea-Solomon Island region: a reconnaissance study. Econ Geol 73:857–877

    Article  Google Scholar 

  • Matte P, Tapponnier P, Arnaud N, Bourjot L, Avouac JP, Vidal P et al (1996) Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet Sci Lett 142:311–330. doi:10.1016/0012-821X(96)00086-6

    Article  Google Scholar 

  • McCarthy TC, Patiño Douce AE (1997) Experimental evidence for high-temperature felsic melts formed during basaltic intrusion of the deep crust. Geology 25:463–466. doi:10.1130/0091-7613(1997)025<0463:EEFHTF>2.3.CO;2

    Article  Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Google Scholar 

  • Nitoi E, Munteanu M, Marincea S, Paraschivoiu V (2002) Magma-enclave interactions in the East Carpathian subvolcanic zone, Romania: petrogenetic implications. J Volcanol Geotherm Res 118:229–259. doi:10.1016/S0377-0273(02)00258-5

    Article  Google Scholar 

  • Pan YS, Zhou WM, Xu RH, Wang DA, Zhang YQ, Xie YW et al (1996) Geological characteristics and evolution of the Kunlun mountains region during the early Paleozoic. Sci China Ser D 39:337–347

    Google Scholar 

  • Pan GT, Ding J, Wang LQ, Zhuang YX, Wang QH, Zhai YG et al (2002) Important new progress of regional geological investigation in the Tibetan Plateau. Geol Bull China 21:787–793 in Chinese with English abstract

    Google Scholar 

  • Patiño Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Carstro A, Fernandez C, Vigneresse JL (eds) Understanding granites: integrating new and classic techniques, vol 168. Geological Society, London, Special Publications, pp 55–75

  • Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121:224–227. doi:10.1016/0012-821X(94)90042-6

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral—melt partitioning of major elements at 2–3 GPa. J Petrol 44:2173–2201. doi:10.1093/petrology/egg074

    Article  Google Scholar 

  • Plá Cid J, Nardi LVS, Campos CS, Gisbert PE, Merlet C, Conceição H et al (2007) La, Ce, Nd, and Sr behavior in minette magmas during crystallization of apatite-clinopyroxene-mica paragenesis at upper-mantle conditions. Eur J Mineral 19:39–50. doi:10.1127/0935-1221/2007/0019-0039

    Article  Google Scholar 

  • Popov VS, Boronikhin VA, Gmyra VG, Semina VA (1982) Garnets from the andesite-dacites of the Kel’sk volcanic highlands (Greater Caucasua). Int Geol Rev 24:577–584

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70:4513–4527. doi:10.1016/j.gca.2006.06.162

    Article  Google Scholar 

  • Qian ZZ, Hu ZG, Li HM (2000) Petrology and tectonic environment of Indosinian Hypabassal rock in the middle belt of East Kunlun Mountains. J Mineral Petrol 18:14–18

    Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrain Res 51:1–25

    Article  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356. doi:10.1016/S0009-2541(99)00106-0

    Article  Google Scholar 

  • Ren MH, Parker DF, White JC (2003) Partitioning of Sr, Ba, Rb, Y, and LREE between plagioclase and peraluminous silicic magma. Am Mineral 88:1091–1103

    Google Scholar 

  • Richards J, Kerrich R (2007) Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Econ Geol 102:537–576. doi:10.2113/gsecongeo.102.4.537

    Article  Google Scholar 

  • Roderíguez C, Sellés D, Dungan M, Langmuir C, Leeman W (2007) Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví| Volcano (36.2°S; Andean SouthernVolcanic Zone, Central Chile). J Petrol 48:2033–2061. doi:10.1093/petrology/egm049

    Google Scholar 

  • Rudnick RL, Gao S (2004) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. The Crust. Elsevier, Amsterdam; Pergamon, New york, pp 1–64

  • Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent condition. Contrib Mineral Petrol 107:41–59. doi:10.1007/BF00311184

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure—an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310. doi:10.1007/BF00310745

    Article  Google Scholar 

  • Schulze DJ, Valley JR, Bell DR, Spicuzza MJ (2001) Oxygen isotope variations in Cr-poor megacrysts from kimberlite. Geochim Cosmochim Acta 65:4375–4384. doi:10.1016/S0016-7037(01)00734-7

    Article  Google Scholar 

  • Schwab M, Ratschbacher L, Siebel W, McWilliams M, Minaev V, Lutkov V et al (2004) Assembly of the Pamirs: age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics 23:TC4002. doi:10.1029/2003TC001583

    Article  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implication for the origin of adakites. Contrib Mineral Petrol 117:394–409. doi:10.1007/BF00307273

    Article  Google Scholar 

  • Sengör AMC (1987) Tectonics of the Tethysides: Orogenic Collage Development in a Collisional Setting. Annu Rev Earth Planet Sci 15:213–244. doi:10.1146/annurev.ea.15.050187.001241

    Article  Google Scholar 

  • Skjerlie KP, Johnston AD (1996) Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: implications for anatexis in the deep to very deep continental crust and active continental margins. J Petrol 37:661–691. doi:10.1093/petrology/37.3.661

    Article  Google Scholar 

  • Smithies RH (2000) The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakites. Earth Planet Sci Lett 182:115–125. doi:10.1016/S0012-821X(00)00236-3

    Article  Google Scholar 

  • Sobel E, Arnaud N (1999) A possible middle Paleozoic suture in the Altyn Tagh, NW China. Tectonics 18:64–74. doi:10.1029/1998TC900023

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362. doi:10.1016/0012-821X(77)90060-7

    Article  Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40:1012. doi:10.1029/2001RG000108

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basin, Geological Society Special Publication, vol 42. Blackwell, Oxford, pp 313–346

  • Tassara A (2006) Factors controlling the crustal density structure underneath active continental margins with implications for their evolution. Geochem Geophys Geosyst 7:Q01001. doi:10.1029/2005GC001040

    Article  Google Scholar 

  • Tatsumi Y, Eggins S (1995) Subduction Zone Magmatism. Blackwell, Oxford, pp 1–210

  • Taylor HP Jr, Epstein S (1962) Relationships between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks: Part I. Principles and experimental results. Geol Soc Am Bull 73:461–480. doi:10.1130/0016-7606(1962)73[461:RBORIC]2.0.CO;2

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • van Sestrenen W, Blundy JD, Wood BJ (2001) High field strength element/rare element fractionation during partial melting in the presence of garnet: implications for identification of mantle heterogeneities. Geochem Geophys Geosyst 2:2000GC000133

  • Wang GC, Wang QH, Jian P, Zhu YH (2004) Zircon SHRIM P ages of Precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun Mountains, Qinghai Province, China. Earth Sci Front 11:481–490

    Google Scholar 

  • Wang GC, Zhang TP, Liang B, Chen NS, Zhu YH, Zhu J, Bai YS (1999) Composite ophiolitic mélange zone in central part of eastern section of Eastern Kunlun Orogenic Zone and geological significance of “Fault belt in Central part of Eastern of Eastern Kunlun Orogenic Zone”. Earth Sci J China Univ Geosci 24:129–133

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304. doi:10.1016/0012-821X(83)90211-X

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35

    Google Scholar 

  • Wu J, Lan CL, Li JL (2005) Geochemical characteristics and tectonic setting of volcanic rocks in the Muztag ophiolitic mélange, East Kunlun Mountains, Xinjiang, China (in Chinese with English abstract). Geol Bull China 24:1157–1161

    Google Scholar 

  • Xiao WJ, Windley BF, Chen HL, Zhang GC, Li JL (2002a) Carboniferous-Triassic subduction and accretion in the western Kunlun, China: implications for the collisional and accretionary tectonics of the northern Tibetan plateau. Geology 30:295–298. doi:10.1130/0091-7613(2002)030<0295:CTSAAI>2.0.CO;2

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Hao J, Li JL (2002b) Arc-ophiolite obduction in the Western Kunlun Range (China): implications for the Palaeozoic evolution of central Asia. J Geol Soc Lond 159:517–528

    Google Scholar 

  • Yang JS, Wu CL, Shi RD, Li HB, Xu ZQ, Meng FC (2002) Miocene and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area, north of the Qinghai-Tibet Plateau. Acta Petrol Sin 18:161–176

    Google Scholar 

  • Yang JZ, Shen YC, Li GM, Liu TB, Zeng QD (1999) Basic features and its tectonic significance of Yaziquan ophiolite belt in eastern Kunlun orogenic belt, Xinjiang (in Chinese with English abstract. Geoscience 13:309–314

    Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan–Tibetan Orogen. Annu Rev Earth Planet Sci 28:211–280. doi:10.1146/annurev.earth.28.1.211

    Article  Google Scholar 

  • Yin HF, Zhang KX (1997) Characteristics of the eastern Kunlun orogenic Belt. Earth Sci J China Univ Geosci 22:339–342

    Google Scholar 

  • Yu N, Jin W, Ge WC, Long XP (2005) Geochemical study on Peraluminous granite from Jinshuikou in East Kunlun (in Chinese with English abstract. Glob Geol 24:123–128

    Google Scholar 

  • Yuan C, Sun M, Zhou MF, Xiao WJ, Zhou H (2005) Geochemistry and petrogenesis of the Yishak volcanic sequence, Kudi ophiolite, West Kunlun (NW China): implications for the magmatic evolution in a subduction zone environment. Contrib Mineral Petrol 150:195–211. doi:10.1007/s00410-005-0012-0

    Article  Google Scholar 

  • Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG, Yin JF (2002) Mesozoic lithosphere destruction beneath the North China Craton: evidence from major, trace element, and Sr–Nd–Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol 144:241–253

    Google Scholar 

Download references

Acknowledgments

We thank Qian Mao, Yuguang Ma and Ms. Ying Liu for their help with the analytical work. The authors benefited from discussions with Drs Guochun Zhao, Hongfu Zhang, Nengsong Chen, Chunming Wu and Petra Bach. We also appreciate the constructive and encouraging comments of reviewers Ali Polat and Fu-yuan Wu, which helped us to improve and clarify the manuscript. This work was supported by research grants from the National Basic Research Program of China (973 Program) 2007CB411308, NSFC Projects 40421303, 40572043, 40725009 and Hong Kong RGC (HKU 7040/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, C., Sun, M., Xiao, W. et al. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: implications for adakite and magmas from the MASH Zone. Int J Earth Sci (Geol Rundsch) 98, 1489–1510 (2009). https://doi.org/10.1007/s00531-008-0335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0335-y

Keywords

Navigation