Skip to main content
Log in

Slow-metabolizing ADH1B and inactive heterozygous ALDH2 increase vulnerability to fatty liver in Japanese men with alcohol dependence

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Genetic polymorphisms of alcohol dehydrogenase-1B (ADH1B; rs1229984, His48Arg) and aldehyde dehydrogenase-2 (ALDH2; rs671, Glu504Lys) affect body weight, body fat, and lipid metabolism in individuals with alcohol dependence, and the aim of this study was to identify their determinants in relation to the development of fatty liver.

Methods

We evaluated associations between the presence of fatty liver and ADH1B and ALDH2 genotypes and other factors in 1604 Japanese men who had been admitted for treatment of alcohol dependence.

Results

Fatty liver was diagnosed when ultrasonography showed both hepatorenal contrast and liver brightness. Age-adjusted usual alcohol intake did not differ according to ADH1B or ALDH2 genotypes. A multivariate analysis showed that the adjusted odds ratio (OR, 95% confidence interval) of slow-metabolizing ADH1B Arg/Arg carriers was 1.61 (1.27–2.03) for fatty liver and 1.82 (1.37–2.41) for fatty liver with deep attenuation in comparison with the ADH1B His/Arg or His/His carriers, and that the OR of inactive heterozygous ALDH2 Glu/Lys carriers was 1.43 (1.08–1.91) for fatty liver and 1.84 (1.31–2.59) for fatty liver with deep attenuation in comparison with the ALDH2 Glu/Glu carriers. Younger age, shorter interval between the last drink and the ultrasound examination, larger body mass index, and absence of cirrhosis were identified as other positive determinants for fatty liver.

Conclusions

The ADH1B Arg/Arg genotype and the ALDH2 Glu/Lys genotype were positive determinants of fatty liver in the subjects. These results suggest that slow ethanol and acetaldehyde metabolism accelerates the development of alcoholic fatty liver in heavy drinkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AceCS1:

Acetyl-CoA synthetase-1

ADH1B:

Alcohol dehydrogenase-1B

ALDH2:

Aldehyde dehydrogenase-2

AMPK:

AMP-activated protein kinase

BMI:

Body mass index

CI:

Confidence interval

CYP2E1:

Cytochrome P4502E1

LSM:

Least square mean

OR:

Odds ratio

PPARα:

Peroxisome proliferator-activated receptor α

SERBP-1:

Sterol regulatory element-binding protein-1

TCA:

Tricarboxylic acid

VLDL:

Very low density lipoprotein

Reference

  1. Goedde HW, Agarwal DP, Fritze G, et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum Genet. 1992;88:344–6.

    Article  CAS  PubMed  Google Scholar 

  2. Higuchi S, Matsushita S, Muramatsu T, et al. Alcohol and aldehyde dehydrogenase polymorphism and the risk for alcoholism. Am J Psychiatry. 1995;152:1219–21.

    Article  CAS  PubMed  Google Scholar 

  3. Mizoi Y, Yamamoto K, Ueno Y, et al. Involvement of genetic polymorphism of alcohol and aldehyde dehydrogenase in individual variation of alcohol metabolism. Alcohol Alcohol. 1994;29:707–10.

    CAS  PubMed  Google Scholar 

  4. Neumark YD, Friedlander Y, Durst R, et al. Alcohol dehydrogenases polymorphisms influence alcohol-elimination rates in a male Jewish population. Alcohol Clin Exp Res. 2004;28:10–4.

    Article  CAS  PubMed  Google Scholar 

  5. Yokoyama A, Tsutsumi E, Imazeki H, et al. Contribution of the alcohol dehydrogenase-1B genotype and oral microorganisms to high salivary acetaldehyde concentrations in Japanese alcoholic men. Int J Cancer. 2007;121:1047–54.

    Article  CAS  PubMed  Google Scholar 

  6. Yokoyama A, Tsutsumi E, Imazeki H, et al. Polymorphisms of alcohol dehydrogenase 1B and aldehyde dehydrogenase-2 and the blood and salivary ethanol and acetaldehyde concentrations of Japanese alcoholic men. Alcohol Clin Exp Res. 2010;34:1246–56.

    Article  CAS  PubMed  Google Scholar 

  7. Yokoyama A, Kamada Y, Imazeki H, et al. Effects of ADH1B and ALDH2 genetic polymorphisms on alcohol elimination rates and salivary acetaldehyde levels in intoxicated Japanese alcoholic men. Alcohol Clin Exp Res. 2016;40:1241–50.

    Article  CAS  PubMed  Google Scholar 

  8. Chen CC, Lu RB, Chen YC, et al. Interaction between the functional polymorphisms of the alcohol-metabolism genes in protection against alcoholism. Am J Hum Genet. 1999;65:795–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim DJ, Choi IG, Park BL, et al. Major genetic components underlying alcoholism in Korean population. Hum Mol Genet. 2008;17:854–8.

    Article  CAS  PubMed  Google Scholar 

  10. Zintzaras E, Stefanidis I, Santos M, et al. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcohol liver disease? Hepatology. 2006;43:352–61.

    Article  CAS  PubMed  Google Scholar 

  11. Hosokawa Y, Yokoyama A, Yokoyama T, et al. Relationship between drinking, smoking, and dietary habits and the body mass index of Japanese alcoholic men. Jpn J Alcohol Drug Depend. 2010;45:25–37 (In Japanese with English abstract).

    Google Scholar 

  12. Yokoyama A, Yokoyama T, Matsui T, et al. Alcohol dehydrogenase-1B genotype (rs1229984) is a strong determinant of the relationship between body weight and alcohol intake in Japanese alcoholic men. Alcohol Clin Exp Res. 2013;37:1123–32.

    Article  CAS  PubMed  Google Scholar 

  13. Yokoyama A, Yokoyama T, Mizukami T, et al. Alcoholic ketosis: prevalence, determinants, and ketohepatitis in Japanese alcoholic men. Alcohol Alcohol. 2014;49:618–25.

    Article  CAS  PubMed  Google Scholar 

  14. Yokoyama A, Yokoyama T, Matsui T, et al. Alcohol dehydrogenase-1B (rs1229984) and aldehyde dehydrogenase-2 (rs671) genotypes are strong determinants of the serum triglyceride and cholesterol levels of Japanese alcoholic men. PLoS One. 2015;10:e0133460.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yokoyama A, Mizukami T, Matsui T, et al. Genetic polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 and liver cirrhosis, chronic calcific pancreatitis, diabetes mellitus, and hypertension among Japanese alcoholic men. Alcohol Clin Exp Res. 2013;37:1391–401.

    Article  CAS  PubMed  Google Scholar 

  16. Maruyama K, Takahashi H, Okuyama K, et al. Genotypes of alcohol-metabolizing enzymes and the risk for alcoholic liver diseases. Shokakika. 1999;29:718–25 (In Japanese).

    Google Scholar 

  17. Yamauchi M, Maezawa Y, Mizuhara Y, et al. Polymorphisms in alcohol metabolizing enzyme genes and alcoholic cirrhosis in Japanese patients: a multivariate analysis. Hepatology. 1995;22:1136–42.

    CAS  PubMed  Google Scholar 

  18. Yokoyama A, Hirota T, Omori T, et al. Development of squamous neoplasia in esophageal iodine-unstained lesions and the alcohol and aldehyde dehydrogenase genotypes of Japanese alcoholic men. Int J Cancer. 2012;130:2949–60.

    Article  CAS  PubMed  Google Scholar 

  19. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington DC: American Psychiatric Association; 1994.

    Google Scholar 

  20. World Health Organization (WHO). International statistical classification of diseases and related health problems. Tenth Revision. Geneva: WHO; 1993.

    Google Scholar 

  21. Hamaguchi M, Kojima T, Itoh Y, et al. The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am J Gastroenterol. 2007;102:2708–15.

    Article  PubMed  Google Scholar 

  22. Xu Y, Carr LG, Bosron WF, et al. Genotyping of human alcohol dehydrogenases at the ADH2 and ADH3 loci following DNA sequence amplification. Genomics. 1988;2:209–14.

    Article  CAS  PubMed  Google Scholar 

  23. Harada S, Zhang S. New strategy for detection of ALDH2 mutant. Alcohol Alcohol. 1993;28(Suppl):11–3.

    CAS  Google Scholar 

  24. Yokoyama A, Yokoyama T, Mizukami T, et al. Blood ethanol levels of nonabstinent Japanese alcoholic men in the morning after drinking and their ADH1B and ALDH2 genotypes. Alcohol Alcohol. 2014;49:31–7.

    Article  CAS  PubMed  Google Scholar 

  25. Nuutinen H, Lindros K, Hekali P, et al. Elevated blood acetate as indicator of fast ethanol elimination in chronic alcoholics. Alcohol. 1985;2:623–6.

    Article  CAS  PubMed  Google Scholar 

  26. Luong A, Hannah VC, Brown MS, et al. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem. 2000;275:26458–66.

    Article  CAS  PubMed  Google Scholar 

  27. Fujino T, Kondo J, Ishikawa M, et al. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J Biol Chem. 2001;276:11420–6.

    Article  CAS  PubMed  Google Scholar 

  28. Lundquist F, Tygstrup N, Winkler K, et al. Ethanol metabolism and production of free acetate in the human liver. J Clin Invest. 1962;41:955–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sozio M, Crabb DW. Alcohol and lipid metabolism. Am J Physiol Endocrinol Metab. 2008;295:E10–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baraona E, Lieber CS. Effects of ethanol on lipid metabolism. J Lipid Res. 1979;20:289–315.

    CAS  PubMed  Google Scholar 

  31. Svoboda DJ, Manning RT. Chronic alcoholism with fatty metamorphosis of the liver. Mitochondrial alterations in hepatic cells. Am J Pathol. 1964;44:645–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Enomoto N, Takase S, Yasuhara M, et al. Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcohol Clin Exp Res. 1991;15:141–4.

    Article  CAS  PubMed  Google Scholar 

  33. Peng GS, Chen YC, Tsao TP, et al. Pharmacokinetic and pharmacodynamic basis for partial protection against alcoholism in Asians, heterozygous for the variant ALDH2*2 gene allele. Pharmacogenet Genomics. 2007;17:845–55.

    Article  CAS  PubMed  Google Scholar 

  34. Murayama M, Matsushita S, Muramatsu T, et al. Clinical characteristics and disease course of alcoholics with inactive aldehyde dehydrogenase-2. Alcohol Clin Exp Res. 1998;22:524–7.

    Article  CAS  PubMed  Google Scholar 

  35. Chaudhry KK, Samak G, Shukla PK, et al. ALDH2 deficiency promotes ethanol-induced gut barrier dysfunction and fatty liver in mice. Alcohol Clin Exp Res. 2015;39:1465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo R, Xu X, Babcock SA, et al. Aldehyde dedydrogenase-2 plays a beneficial role in ameliorating chronic alcohol-induced hepatic steatosis and inflammation through regulation of autophagy. J Hepatol. 2015;62:647–56.

    Article  CAS  PubMed  Google Scholar 

  37. Matsumoto A, Kawamoto T, Mutoh F, et al. Effects of 5-week ethanol feeding on the liver aldehyde dehydrogenase 2 knockout mice. Pharmacogenet Genomics. 2008;18:847–52.

    Article  CAS  PubMed  Google Scholar 

  38. Kwon HJ, Won YS, Park O, et al. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology. 2014;60:146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. You M, Fischer M, Deeg MA, et al. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem. 2002;277:29342–7.

    Article  CAS  PubMed  Google Scholar 

  40. Galli A, Pinaire J, Fischer M, et al. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J Biol Chem. 2001;276:68–75.

    Article  CAS  PubMed  Google Scholar 

  41. You M, Matsumoto M, Pacold CM, et al. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology. 2004;127:1798–808.

    Article  CAS  PubMed  Google Scholar 

  42. Tuma DJ, Smith SL, Sorrell MF. Acetaldehyde and microtubles. Ann NY Acad Sci. 1991;625:786–92.

    Article  CAS  PubMed  Google Scholar 

  43. Takada A, Takase S, Tsutsumi M. Characteristic features of alcoholic liver disease in Japan: a review. Gastroenterol Jpn. 1993;28:137–48.

    CAS  PubMed  Google Scholar 

  44. Bierut LJ, Goate AM, Breslau N, et al. ADH1B is associated with alcohol dependence and alcohol consumption in populations of European and African ancestry. Mol Psychiatry. 2012;17:445–50.

    Article  CAS  PubMed  Google Scholar 

  45. Sookoian S, Flichman D, Castaño GO, et al. Mendelian randomisation suggests no beneficial effect of moderate alcohol consumption on the severity of nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2016;44:1224–34.

    Article  CAS  PubMed  Google Scholar 

  46. Oniki K, Morita K, Watanabe T, et al. The longitudinal effect of the aldehyde dehydrogenase 2*2 allele on the risk for nonalcoholic fatty liver disease. Nutr Diabetes. 2016;6:e210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lieber CS. Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968–1998): a review. Alcohol Clin Exp Res. 1999;23:991–1007.

    CAS  PubMed  Google Scholar 

  48. Lu Y, Zhuge J, Wang X, et al. Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology. 2008;47:1483–94.

    Article  CAS  PubMed  Google Scholar 

  49. Lieber CS. Perspective: do alcohol calories count? Am J Clin Nutr. 1991;54:976–82.

    Article  CAS  PubMed  Google Scholar 

  50. Khov N, Sharma A, Riley TR. Bedside ultrasound in the diagnosis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:6821–5.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Salameh H, Raff E, Erwin A, et al. PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am J Gastroenterol. 2015;110:846–56.

    Article  CAS  PubMed  Google Scholar 

  52. Rausch V, Peccerella T, Lackner C, et al. Primary liver injury and delayed resolution of liver stiffness after alcohol detoxification in heavy drinkers with the PNPLA3 variant I148M. World J Hepatol. 2016;8:1547–56.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kawaguchi T, Sumida Y, Umemura A, et al. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One. 2012;7:e38322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Osaki Y, Kinjo A, Higuchi S, et al. Prevalence and trends in alcohol dependence and alcohol use disorders in Japanese adults; results from periodical nationwide surveys. Alcohol Alcohol. 2016;51:465–73.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Minori Tsukahara for her expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yokoyama.

Ethics declarations

Financial support

The authors have no support or funding to report.

Conflict of interest

Nothing to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, A., Taniki, N., Hara, S. et al. Slow-metabolizing ADH1B and inactive heterozygous ALDH2 increase vulnerability to fatty liver in Japanese men with alcohol dependence. J Gastroenterol 53, 660–669 (2018). https://doi.org/10.1007/s00535-017-1402-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-017-1402-6

Keywords

Navigation