Skip to main content
Log in

Defect-free wet etching through pyrex glass using Cr/Au mask

  • Technical paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper reports the highest etch depth of annealed Pyrex glass achieved by wet etching in highly concentrated HF solution, using a low stress chromium–gold with assistance of photoresist as masking layer. The strategies to achieve that are: increasing the etch rate of glass and simultaneously increasing the resistance of Cr/Au mask in the etchant. By annealing the Pyrex glass and using a highly concentrated HF acid, a high etch rate can be obtained. Furthermore, a method to achieve a good resistance of the Cr/Au masking layer in the etching solution is to control the residual stress and to increase the thickness of Au deposition up to 1 μm. In addition, the presence of a hard baked photoresist can improve the etching performance. As a result, a 500-μm thick Pyrex glass wafer was etched through.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bien DCS, Rainey PV, Mitchel SJM, Gamble HS (2003) Characterization of masking materials for deep glass micromachining. J Micromech Microeng 13:S34–S40

    Article  Google Scholar 

  • Bu M, Melvin T, Ensell GJ, Wilkinson JS, Evans AGR (2004) A new masking technology for deep glass etching and its microfluidic application. Sens Actuators A 115(2–3):476–482

    Article  Google Scholar 

  • Corman T, Enokson P, Stemme G (1998) Deep wet etching of borosilicate glass using anodically bonded silicon substrate as mask. J Micromech Microeng 8:84–87

    Article  Google Scholar 

  • Fujita T, Maenaka K, Mizuno T, Matsuoka T, Kojima T, Oshima T, Maeda M (2000) Disk-shaped bulk micromachined gyroscope with vacuum sealing. Sens Actuators A 82(1–3):198–204

    Article  Google Scholar 

  • Grettilat MA, Paoletti F, Thiebaud P, Roth S, Kondelka-Hep M, de Rooij NF (1997) A new fabrication method for borosilicate glass capillary tubes with lateral inlets and outlets. Sens Actuators A 60:219–222

    Article  Google Scholar 

  • Grosse A, Grewe M, Fouckhardt H (2001) Deep wet etching of fused silica glass for hallow capillary optical leaky waveguides in microfluidic devices. J Micromech Microeng 11:257–262

    Article  Google Scholar 

  • Iliescu C, Miao J, Tay FEH (2005) Stress control in masking layers for deep wet micromachining of Pyrex glass. Sens Actuators A 117(2):286–292

    Article  Google Scholar 

  • Kim C, Kim Y (2002) Micro XY-stage using silicon on a glass substrate. J Micromech Microeng 12:103–107

    Article  Google Scholar 

  • Li X, Abe T, Esashi M (2002) Fabrication of high-density electrical feed-throughs by deep- reactive-ion etching of Pyrex glass. J Microelectromech Syst 1(6):625–630

    Article  Google Scholar 

  • Luginbuhl Ph, Indermuhle PF, Gretillat MA, Willemin F, de Rooij NF, Gerber D, Gervasio G, Vuilleumier JL, Twerenbold D, Duggelin M, Guggenheim R (1999) Micromachined injector for DNA mass spectrometry. In: Proceedings on Transducers’99, pp 1130–1133

  • Madou MJ (2002) Fundamentals of microfabrication, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Obeid PJ, Christopoulos TK, Crabtree HJ, Backhouse CJ (2003) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75:288–295

    Article  PubMed  Google Scholar 

  • Roylance L, Angell J (1978) A miniature integrated circuit accelerometer. In: Solid state circuits conference, pp 220–221

  • Rusu C, van’t Oever R, de Boer MJ, Jansen HV, Berenschot JW, Bennink ML, Kanger JS, de Grooth BG, Elwenspoek M, Greve J, Brugger J, van den Berg A (2001) Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers. J Microelectromech Syst 10:238–246

    Article  Google Scholar 

  • Shoji S, Kikuchi H, Torigoe H (1997) Low-temperature anodic bonding using lithium aluminosilicate-β-quartz glass ceramic. Sens Actuators A 64:95–100

    Article  Google Scholar 

  • Simpson PC, Woolley AT, Mathies RA (1998) Microfabrication technology for the production of capillary array electrophoresis chips. Biomed Microdevice 1(1):7–25

    Article  Google Scholar 

  • Stjernström M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. J Micromech Microeng 8:33–38

    Article  Google Scholar 

Download references

Acknowledgement

This project is funded by the Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (IBN/04-R44007-OOE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian Iliescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tay, F.E.H., Iliescu, C., Jing, J. et al. Defect-free wet etching through pyrex glass using Cr/Au mask. Microsyst Technol 12, 935–939 (2006). https://doi.org/10.1007/s00542-006-0116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-006-0116-0

Keywords

Navigation