Skip to main content
Log in

Modeling, optimization and performance of high-Q MEMS solenoid inductors

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Modeling, optimization and performance of on-chip solenoid inductors is presented. MATLAB is used to get the π-equivalent circuit model parameters. The effects of the geometrical parameters on the inductance and quality factor (Q-factor) are different. Normally, the performance of the inductors can be improved by increasing the coil turns in a way and increasing the length of the conductor, but both of them will occupy more chip area, which is not good for the minimization of the on-chip system. It is desirable to improve the performance of inductor by increasing the height of the via. Of the three types of fabricated inductors covering the same area, the inductors with the height of via 15, 30 and 45 μm have high performance. The self-resonant frequency is up to 10 GHz. The inductances and Q-factors at peak-Q frequency (about 5.8 GHz) are 1.16, 1.35, 1.78 nH and 21.9, 27, 38, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahn CH, Allen MG, Trimmer W, et al (1996) A fully integrated micromachined magnetic particle separator. J Microelectromech Syst 5(3):151–158

    Article  Google Scholar 

  • Bartoli M, Reatti A, Kazierczuk MK (1994) High-frequency models of ferrite core inductors. Proceedings of IEEE international conference on industrial electronics, control, instrumentation, and automation (IECON’94), Bologna, 5–9 September, pp 1670–1675

  • Booker HG (1982) Energy in electromagnetism. Peter Peregrinus (on behalf of the IEE), London/New York

  • Burghartz JN (1996) Multilevel-spiral inductors using VLSI interconnect technology. IEEE Electron Device Lett 17(9):428–430

    Article  Google Scholar 

  • Dahlmann GW, Yeatman EM, Young P, Robertson ID, et al (2002) Fabrication, RF characteristics and mechanical stability of self-assembled 3D microwave inductors. Sens Actuators A 97–98:215–220

    Article  Google Scholar 

  • Dowell PJ (1966) Effects of eddy currents in transformer windings. Pro Inst Elect Eng 113(8):1387–1394

    Google Scholar 

  • Fang D-M, Zhou Y, Wang X-N, Zhao X-L (2007) Surface micro-machined high-performance RF MEMS inductors. Microsystem Technol 13(1):79–83

    Article  Google Scholar 

  • Grandi G, Kazimierczuk MK, Massarini A, etc (2004) Model of laminated iron-core inductors for high frequencies. IEEE Trans Magn 40(7):1839–1845

    Article  Google Scholar 

  • Greenhouse HM (1974) Design of planar rectangular microelectronic inductors. IEEE Trans Parts, Hybrids, Packag PHP-10(2):101–109

    Article  Google Scholar 

  • Itoi K, Sato M, Abe H, et al (2004) On-chip high-Q solenoid inductors embedded in WL-CSP. Proceedings of HDP, pp 105–108

  • Jiang H, Wang Y, Andrew Yeh J-L, Tien NC (2003) On-chip spiral inductors suspended over deep copper-lined cavities. IEEE Trans. Microwave Theory Tech 48(12):2415–2423

    Article  Google Scholar 

  • Kim Y-J, Allen MG (1998) Surface micromachined solenoid inductors for high frequency applications. IEEE Trans Packag Manuf Technol 21(1):26–33

    Article  Google Scholar 

  • Liang YC, Zeng W, Ong PH, Gao Z, et al (2002) A concise process technology for 3-D suspended radio frequency micro-inductors on silicon substrate. IEEE Electron Device Lett 23(12):700–703

    Article  Google Scholar 

  • Lihui G, Mingbin Y, Zhen C, Han H, Yi Z (2002) High Q multilayer spiral inductor on silicon chip for 5∼6 GHz . IEEE Electron Device Lett 23(8):470–472

    Article  Google Scholar 

  • Lin CS, Fang YK, Chen SF, et al (2005a) A deep submicrometer CMOS process compatible high-Q air-gap solenoid inductor with laterally laid structure. IEEE Electron Device Lett 26:160–162

    Article  Google Scholar 

  • Lin CS, Fang YK, Chen SF, et al (2005b) A novel Ni capped high Q copper air gap spiral inductor. Mater Sci Semicond Process 8:545–549

    Article  Google Scholar 

  • Long JR, Copeland MA (1997) The modeling, characterization, and design of monolithic inductors for silicon RF IC’s. IEEE J Solid State Circuits 32:357–369

    Article  Google Scholar 

  • Lovelace D, Camilleri N, Kannel G (1994) Silicon MMIC inductor modeling for high volume, low cost applications. Microwave 37(8):60–71

    Google Scholar 

  • Patrick Yue C, Simon Wong S (1998) On-chip spiral inductors with patterned ground shields for Si-based RF IC’s. IEEE J Solid State Circuits 33(5):743–752

    Article  Google Scholar 

  • Post JE (2000) Optimizing the design of spiral inductors on silicon. IEEE Trans Circuits and Systems II Analog Digital Signal Process 47(1):15–17

    Article  Google Scholar 

  • Ribas RP, Lescot J, Leclercq JL, Karam JM (2000) Micromachined microwave planar spiral inductors and transformers. IEEE Trans Microwave Theory Tech 48(8):1326–1334

    Article  Google Scholar 

  • Rotella FM and Zachan J (2002) Modeling and optimization of inductors with patterned ground shields for a high performance fully integrated switched tuning VCO, Proceedings of the IEEE 2002 custom integrated circuits conference, pp 221–224

  • Soyuer M, Burghartz JN, et al (1995) Multilevel monolithic inductors in silicon technology. Electron Lett 31(5):359–360

    Article  Google Scholar 

  • Tong KY, Tsui C (2005) A physical analytical model of multilayer on-chip inductors . IEEE Trans Microwave Theory Tech 53(4):1143–1149

    Article  Google Scholar 

  • Wang X-N, Zhao X-L, Zhou Y, et al (2004) Fabrication and performance of a novel suspended RF spiral inductor. IEEE Trans Electron Devices 51(5):814–816

    Article  Google Scholar 

  • Yeung T, Lau J, Ho HC, Poon MC, Design considerations for extremely high-Q integrated inductors and their application in CMOS RF power amplifier, IEEE RAWCON’98 Proceedings, pp 265–268

  • Yoon JB, Han CH, Yoon E, Kim CK (1998) Monolithic fabrication of electroplated solenoid inductors using three-dimensional photolithography of a thick photoresist. Jpn J Appl Phys, pt.1 37(12B):7081–7085

    Article  Google Scholar 

  • Yoon JB, Han CH, Yoon E, Kim CK (1999) Monolithic integration of 3-D electroplated microstructures with unlimited number of levels using planarization with a sacrificial metallic mold (PSMM), Micro. Electro. Mechanical Systems, 1999. MEMS ‘99. Twelfth IEEE international conference on 17–21 January, pp 624–629

  • Yoon JB, Kim B, Choi YS, Yoon E (2003) 3-D construction of monolithic passive components for RF and microwave ICs using thick-metal surface micromachining technology. IEEE Tran Microwave Theory Tech 51(1):279–288

    Article  Google Scholar 

  • Zencir E, Dogan NS, Arvas E (2002) Modeling and performance of spiral inductor in SOI CMOS technology, IEEE CCECE 2002 Canadian conference on electrical and computal engineering, pp 408–411

  • Zhuang Y, Rejaei B, Boellaard E, Vroubel M, Burghartz JN (2003) Integrated solenoid inductors with patterned, sputter-deposited Cr/Fe10Co90/Cr ferromagnetic cores. IEEE Electron Device Lett 24(4):224–226

    Article  MathSciNet  Google Scholar 

  • Zou J, Liu C, Trainor DR, et al (2003) Development of three-dimensional inductors using plastic deformation magnetic assembly(PDMA). IEEE Trans Microwave Theory Tech 51(4):1067–1075

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai-Applied Materials Research and Development Fund (No.0515), National High Technology Research and Development Program (No. 2006AA03Z301), Nanotechnology Program of Shanghai Science & Technology Committee (No. 0652 nm004), and Non-silicon Precision Micromachining and Microfabrication Technology (D2320060098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, DM., Zhou, Y., Jing, XM. et al. Modeling, optimization and performance of high-Q MEMS solenoid inductors. Microsyst Technol 14, 185–191 (2008). https://doi.org/10.1007/s00542-007-0421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-007-0421-2

Keywords

Navigation