Skip to main content

Advertisement

Log in

Sputtered thin film piezoelectric aluminum nitride as a functional MEMS material

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A comprehensive study on the complete process for the fabrication of AlN-based MEMS sensors and actuators is presented. Varying the bias voltage during the reactive rf sputtering enables to adjust the stress level in AlN films in the range of about 2 GPa. For the first time the influence of the rf bias power on the whole set of piezoelectric parameters was investigated. It could be shown that the dielectric permittivity, dielectric loss, rocking curve width, effective longitudinal piezoelectric coefficient d 33,f and effective transverse piezoelectric coefficient e 31,f remained unchanged. Further it was observed that piezoelectric AlN films could be deposited at low process temperatures of only 200 °C. Moreover an increase in the e 31,f coefficient with thicker films could be stated. Finally cone formation during wet etching was observed and revealed a formation of {01–12} planes which exhibit a slow etching rate. The c-textured growth of AlN starts directly at the Pt interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ababneh A, Schmid U, Hernando J, Sánchez-Roja JL, Seidel H (2010) The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films. Mater Sci Eng B 172:253–258

    Article  Google Scholar 

  • Benetti M et al (2006) Growth and characterization of piezoelectric AlN thin films for diamond-based surface acoustic wave devices. Thin Solid Films 497:304–308

    Article  Google Scholar 

  • Bickermann M, Schmidt S, Epelbaum BM, Heinemann P, Magata S, Winnacker A (2007) Wet KOH etching of freestanding AlN single crystals. J Cryst Growth 300:299–307

    Article  Google Scholar 

  • Chen D, Xu D, Wang J, Zhao B, Zhang Y (2009) Dry etching of AlN films using the plasma generated by fluoride. Vacuum 83:282–285

    Article  Google Scholar 

  • Chiu KH, Chen JH, Chen HR, Huang RS (2007) Deposition and characterization of reactive magnetron sputtered aluminum nitride thin films for film bulk acoustic wave resonator. Thin Solid Films 515:4819–4825

    Article  Google Scholar 

  • Dubois MA, Muralt P (2001) Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering. J Appl Phys 89(11):6389–6395

    Article  Google Scholar 

  • Greve H, Woltermann E, Jahns J et al (2010) Low damping resonant magnetoelectric sensors. Appl Phys Lett 97:152503

    Article  Google Scholar 

  • Iriarte GF, Engelmark F, Katardjiev IV (2002) Reactive sputter deposition of highly oriented AlN films at room temperature. J Mater Res 17(6):1469–1475

    Article  Google Scholar 

  • Iwata S, Nanjo Y, Okuno T, Kurai S, Taguchi T (2007) Growth and optical properties of AlN homoepitaxial layers grown by ammonia-source molecular beam epitaxy. J Cryst Growth 301–302:461–464

    Article  Google Scholar 

  • Kar JP, Mukherjee S, Bose G, Tuli S, Myoung JM (2009) Impact of post-deposition annealing on the surface, bulk and interface properties of RF sputtered AlN films. Mater Sci Technol 25:1023–1027

    Article  Google Scholar 

  • Karakaya K, Renaud M, Goedbloed M, van Schaijk R (2008) The effect of the built-in stress level of AlN layers on the properties of piezoelectric vibration. J Micromech Microeng 18:104012

    Article  Google Scholar 

  • Kim HH, Ju BK, Lee YH, Lee SH, Lee JK, Kim SW (2001) A noble suspended type thin film resonator (STFR) using the SOI technology. Sens Actuator A 89:255–258

    Article  Google Scholar 

  • Kumagai Y, Yamane T, Koukitu A (2005) Growth of thick AlN layers by hydride vapor-phase epitaxy. J Cryst Growth 28:62–67

    Article  Google Scholar 

  • Lanz R, Lambert C, Senn L, Gabathuler L, Reynolds GJ (2006) Aluminum-nitride manufacturing solution for BAW and other MEMS applications using a novel, high-uniformity PVD source. Proc IEEE Int Ultrason 15:1481–1485

    Google Scholar 

  • Lee Hwan-Chul, Lee Jai-Young (1997) Effect of negative bias voltage on the microstructures of AlN thin films fabricated by reactive r.f. magnetron sputtering. J Mater Sci Mater Electron 8:385–390

    Article  Google Scholar 

  • Loebl HP, Klee M, Metzmacher C, Brand W, Milsom R, Lok P (2003) Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators. Mater Chem Phys 79:143–146

    Article  Google Scholar 

  • Martin F, Muralt P (2006) Process optimization for the sputter deposition of molybdenum thin films as electrode for AlN thin films. J Vac Sci Technol A 24:946–952

    Article  Google Scholar 

  • Martin F, Muralt P, Dubois MA, Pezous A (2004) Thickness dependence of properties of highly c-axis textured AlN thin films. J Vac Sci Technol 22:361–365

    Article  Google Scholar 

  • Matsumoto T, Kiuchi M (2006) Zinc-blende aluminum nitride formation using low-energy ion beam assisted deposition. Nucl Instrum B 242:424–426

    Article  Google Scholar 

  • Medjani F, Sanjinés R, Allidi G, Karimi A (2006) A effect of substrate temperature and bias voltage on the crystallite orientation in RF magnetron sputtered AlN thin films. Thin Solid Films 515:260–265

    Article  Google Scholar 

  • Muralt P, Antifakos J, Cantoni M, Lanz R, Martin F (2005) Is there a better material for thin film BAW applications than AlN? In: Proceedings of the IEEE ultrasonics symposium, pp 315–320

  • Prume K, Muralt P, Calame F, Schmitz-Kempen T, Tiedke S (2007) Extensive electromechanical characterization of PZT thin films for MEMS applications by electrical and mechanical excitation signals. J Electroceram 19:407–411

    Article  Google Scholar 

  • Quenzer HJ, Drechsler U, Sebastian A, Marauska S, Wagner B, Despont M (2011) Fabrication of conducting AFM cantilevers with integrated piezoelectric actuation and sensing. Proc Eurosensors 25:665–668

    Article  Google Scholar 

  • Ristoscu C, Ducu C, Socol G, Craciunoiu F, Mihailescu IN (2005) Structural and optical characterization of AlN films grown by pulsed laser deposition. Appl Surf Sci 248:411–415

    Article  Google Scholar 

  • Saravanan S, Keim SEG, Krijnen GJM, Elwenspoek M (2005) Growth and surface characterization of piezoelectric AlN thin films on silicon (100) and (110) substrates. Springer Proc Phys 107:75–78

    Article  Google Scholar 

  • Saravanan S, Berenschot E, Krijnen G, Elwenspoek M (2006) A novel surface micromachining process to fabricate AlN unimorph suspensions and its application for RF resonators. Sens Actuator A 130–131:340–345

    Article  Google Scholar 

  • Sato A, Azumada K, Atsumori T, Hara K (2007) Characterization of AlN:Mn thin film phosphors prepared by metalorganic chemical vapor deposition. J Cryst Growth 298:379–382

    Article  Google Scholar 

  • Shul RJ, Willison CG, Bridges MM et al (1998) High-density plasma etch selectivity for the III–V nitrides. Solid State Electron 42:2269–2276

    Article  Google Scholar 

  • Song X, Fu R, He H (2009) Frequency effects on the dielectric properties of AlN film deposited by radio frequency reactive magnetron sputtering. Microel Eng 86:2217–2221

    Article  Google Scholar 

  • Stevens KS, Ohtani A, Beresford R (1994) Microstructure of AlN on Si (111) grown by plasma-assisted molecular beam epitaxy. Appl Phys Lett 65:321–323

    Article  Google Scholar 

  • Tanner SM, Felmetsger VV (2010) Microstructure and chemical wet etching characteristics of AlN films deposited by ac reactive magnetron sputtering. J Vac Sci Technol A 28:69–76

    Article  Google Scholar 

  • Tonisch K, Cimalla V, Foerster C, Romanus H, Ambacher O, Dontsov D (2006) Piezoelectric properties of polycrystalline AlN thin films for MEMS application. Sens Actuator A 132:658–663

    Article  Google Scholar 

  • Zhang JX, Cheng H, Chen YZ et al (2005) Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering. Surf Coat Technol 198:68–73

    Article  Google Scholar 

  • Zhuang D, Edgar JH (2005) Wet etching of GaN, AlN, and SiC: a review. Mater Sci Eng 48:1–46

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the DFG within the Collaborative Research Center SFB 855: Magnetoelectric Composites–Future Biomagnetic Interfaces, projects C1, C2 and Z1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Marauska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marauska, S., Hrkac, V., Dankwort, T. et al. Sputtered thin film piezoelectric aluminum nitride as a functional MEMS material. Microsyst Technol 18, 787–795 (2012). https://doi.org/10.1007/s00542-012-1493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1493-1

Keywords

Navigation