Skip to main content
Log in

Fabrication of an hermetically packaged silicon resonator on LTCC substrate

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The design, fabrication and packaging process of silicon resonators capable of the integration of LSI (Large Scale Integration) have been developed on the basis of packaging technology using an LTCC (Low Temperature Co-fired Ceramic) substrate. The structures of silicon resonators are defined by deep reactive ion etching (DRIE) on a silicon on insulator (SOI) wafer and then transferred onto the LTCC substrate and hermetically sealed by anodic bonding technique. The measured resonant frequency of a micromechanical bulk acoustic mode silicon resonator after packaging at 0.02 Pa is 20.24 MHz with a quality factor of 50,600.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ayazi F (2009) MEMS for integrated timing and spectral processing. In: Proceedings of the IEEE 2009 custom integrated circuits conference (CICC), 987-1-4244-4072-6, pp 65–72. doi:10.1109/CICC.2009.5280888

  • Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18(073001):1–13. doi:10.1088/0960-1317/18/7/073001

    Google Scholar 

  • Fang J, Fu J, Ayazi F (2008) Metal-organic thin-film encapsulation for MEMS. J Micromech Microeng 18(105002):1–8. doi:10.1088/0960-1317/18/10/105002

    Google Scholar 

  • Mestrom RMC, Fey RHB, Phan KL, Nijimeijer H (2009) Experimental validation of hardening and softening resonances in a clamped–clamped beam MEMS resonator. In: Proceeding of the Eurosensors XXIII conference, pp 812–815. doi:10.1016/j.proche.2009.07.202

  • Lee JEY, Seshia AA (2009) 5.4-MHz single-crystal silicon wine glass mode disk resonator with quality factor of 2 million. J Sens Actuator A 156(1):28–35. doi:10.1016/j.sna.2009.02.007

    Article  Google Scholar 

  • Li X, Abe T, Liu Y, Esashi M (2002) Fabrication of high density electrical feed through by deep reactive ion etching of pyrex glass. J Microelectromech Syst 11(6):625–629. doi:10.1109/JMEMS.2002.805211

    Article  Google Scholar 

  • Lin YW, Li SS, Xie Y, Ren Z, Nguyen CTC (2004) Series-resonator VHF micromechanical resonator reference oscillators. IEEE J Solid-State Circuits 39(12):2477–2491. doi:10.1109/JSSC.2004.837086

    Article  Google Scholar 

  • Lin YC, Wang WS, Chen LY, Chen MW, Gessner T, Esashi M (2011) Anodically bondable LTCC substrate with novel nano-structured electrical interconnection for MEMS packaging. In: Proceeding of solid-state sensors, actuators and microsystems conference (Transducers 2011), pp 2351–2354. doi:10.1109/TRANSDUCERS.2011.5969554

  • Mattila T, Kihamaki J, Lamminmaki T, Jaakkola O, Ranatakari P, Oja A, Seppa H, Katelus H, Tittonen I (2002) A 12 MHz micromechanical bulk acoustic mode oscillator. Sens Actuators A: Phys 101(1–2):1–9. doi:10.1016/S0924-4247(02)00204-2

    Article  Google Scholar 

  • Melamud R, Kim B, Chandorkar SA, Hopcroft MA, Agarwal M, Jha CM, Kenny TW (2007) Temperature-compensated high-stability silicon resonators. J Appl Phys Lett 90:244107. doi:10.1063/1.2748092

    Article  Google Scholar 

  • Nakamura K, Takayanagi F, Moro Y, Sanpei H, Onozawa M, Esashi M (2004) Development of RF MEMS switch. In: Proceeding of Advantest technical report, 22, pp 9–15 (Japanese language)

  • Nguyen CTC (2007) MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelectr Freq Control 54(2):251–270. doi:10.1109/TUFFC.2007.240

    Article  Google Scholar 

  • Nuyen NT, Boellaard E, Pham NP, Kutchoukow VG, Cracium G, Sarro PM (2002) Evaluation procedures for wafer bonding and thinning of interconnect test structures for 3D ICs. In: Proceeding of interconnect technology conference, pp 74–76. doi:10.1109/IITC.2003.1219717

  • Oberhammer J, Niklaus F, Stemme G (2004) Sealing of adhesive bonded devices on wafer level. Sens Actuators A: Phys 110:407–412. doi:10.1016/j.sna.2003.06.003

    Article  Google Scholar 

  • Peterson KA, Knudson RT, Garcia EJ, Patel KD, Okandan M, Ho CK, James CD, Rohde SB, Rohrer BR, Smith F, Zawicki LR, Wroblewski BD (2005) LTCC in microelectronics, microsystems, and sensors. In: Proceeding of Mixed design of integrated circuits and systems, pp 23–27

  • Pourkamali S, Ayazi F (2007) Wafer-level encapsulation and sealing of electrostatic HARPSS transducers. In: Proceeding of IEEE Sensor, pp 49–52. doi:10.1109/ICSENS.2007.4388333

  • Pourkamali S, Ho GK, Ayazi F (2008) Low-impendance VHF and UHF capacitive silicon bulk acoustic wave resonators—part II: measurement and characterization. IEEE Trans Electron Devices vol 54, no 8. doi:10.1109/TED.2007.901405

  • Ruby RC, Bradley P, Oshmyansky Y, Chien A, Larson JD (2001) Thin film bulk acoustic resonator (FBAR) for wireless applications. In: Proceeding of IEEE ultrasonics symposium, pp 813–821. doi:10.1109/ULTSYM.2001.991846

  • Rusu C, Persson K, Ottosson B, Billger D (2006) LTCC interconnects in microsystems. J Micromech Microeng 16:S13–S18. doi:10.1088/0960-1317/16/6/S03

    Article  Google Scholar 

  • Samarao AK, Ayazi F (2009) Temperature compensation of silicon micromechanical resonator via degenerate doping. In: Proceeding of Electron devices meeting (IEDM), pp 1–4. doi:10.1109/IEDM.2009.5424221

  • Samarao AK, Ayazi F (2011) Combined capacitive and piezoelectric transduction for high performance silicon microresonators. In: Proceeding of micro electro mechanical systems (MEMS 2011), pp 169–172. doi:10.1109/MEMSYS.2011.5734388

  • Sundaresan K, Gavin KH, Pourkamali S, Ayazi F (2007) Electronically temperature compensated silicon bulk acoustic resonator reference oscillators. IEEE J Solid-State Circuits 42(6):1425–1434. doi:10.1109/JSSC.2007.896521

    Article  Google Scholar 

  • Tanaka S, Matruzaki S, Mohri M, Okada A, Fukushi H, Esashi M (2011) Wafer level hermetic packaging technology for MEMS using anodically bondable LTCC wafer. In: Proceeding of Micro electro mechanical systems (MEMS 2011), pp 376–379. doi:10.1109/MEMSYS.2011.5734440

  • Tanaka S, Mohri M, Okada A, Fukushi H, Esashi M (2012) Versatile wafer level hermetic packaging technology using anodically bondable LTCC wafer with compliant porous gold bumps spontaneously formed in wet etched cavities. In: Proceeding of Micro electro mechanical systems (MEMS 2012), pp 369–372. doi:10.1109/MEMSYS.2012.6170211

  • Thuy TLT, Tanaka S, Esashi M, Hieu NV (2011) A capacitive pressure sensor for sensing circuits with GaN diode bridge. J Emerg Trends Eng Appl Sci 6(2):1068–1072

    Google Scholar 

  • Torres F, Teva J, Lopez JLI, Uranga A, Abadal G, Barniol N, Sanchez-Amores A, Montserrat J, Perezmurano F, Esteve J (2007) Nanometer scale gaps for capacitive transduction improvement on RF-MEMS resonators. J Microeletron Eng 84(5):1384–1387. doi:10.1016/j.mee.2007.01.062

    Article  Google Scholar 

  • Van Beek JTM, Puers R (2012) A review of MEMS ocsillators for frequency reference and timing applications. J Micromech Microeng 22:013001. doi:10.1088/0960-1317/22/1/013001

    Article  Google Scholar 

  • Van Beek JTM, Steeneken PG, Giesbers B (2006) A 10 MHz piezoreistive MEMS resonator with high Q. In: Proceeding of International frequency control symposium and exposition 2006 IEEE, pp 475–480. doi:10.1109/FREQ.2006.275432

  • Weinstein D, Bhave SA, Morita S, Mitarai S, Ikeda K (2009) Frequency scaling and transducer efficiency in internal dielectrically transduced silicon bar resonator. In: Proceeding of solid-state sensors, actuators and microsystems conference, pp 708–711. doi:10.1109/SENSOR.2009.5285422

  • Zuo C, Sinha N, Spiegel JVD, Piazza G (2008) Multi-frequency pierce oscillators based on piezoelectric AlN contour-mode MEMS resonators. In: Proceeding of frequency control symposium, pp 402–407. doi:10.1109/FREQ.2008.4623028

Download references

Acknowledgments

Part of this work was performed in the Micro/Nanomachining research education center and the Nishizawa center of Tohoku University. This work was supported in part by a Grant-in Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology of Japan, also supported in part by Special Coordination Funds for Promoting Science and Technology, Formation of Innovation Center for Fusion of Advanced Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Toan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Toan, N., Miyashita, H., Toda, M. et al. Fabrication of an hermetically packaged silicon resonator on LTCC substrate. Microsyst Technol 19, 1165–1175 (2013). https://doi.org/10.1007/s00542-012-1716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1716-5

Keywords

Navigation