Skip to main content
Log in

Choice of insulation materials and its effect on the performance of square microhotplate

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

One of the methods, to improve the uniformity of a microhotplate is to provide an insulation layer of optimum dimensions between the heater and gas sensor. In this paper, two insulation layer material, silicon nitride and silicon carbide, are investigated. Simulation studies are carried out to find the optimum dimension of insulation layer, required for a targeted uniformity of 0.22 K/μm, a value comparable to the reported literature. With 8 μm thick silicon nitride layer, a thermal uniformity of 0.18 K/μm is obtained whereas the same is achieved with a 1.5 μm thick silicon carbide layer. Therefore, the deposition time in the whole process will significantly reduce by employing silicon carbide layer while retaining similar uniformity. It has been established that, the proposed method not only serves the purpose of providing electrical insulation and improve thermal uniformity but also improves the mechanical stability. The silicon carbide is compared with silicon nitride layer in terms of performance parameters and a table is also listed, highlighting the practical aspects involved in the choice of these two insulation layer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • (2001) NSM Archive - Silicon Carbide (SiC). http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC/, [Online]. [April-2013]

  • (2013) coventor.com. http://www.coventor.com/mems-solutions/products/coventorware/, [Online]. [April-2013]

  • Ahmed A, Dennis J, Saad M, Talah W (2008) Design and simulation of a high temperature MEMS micro-hotplate for application in trace gas detection, pp 153–157. doi:10.1109/SMELEC.2008.4770297

  • Arata H, Rondelez Y, Noji H, Fujita H (2005) Temperature alternation by an on-chip microheater to reveal enzymatic activity of β-galactosidase at high temperatures. Anal Chem 77(15):4810–4814

    Article  Google Scholar 

  • Briand D (2001) Thermally isolated microelectronic devices for gas sensing applications. PhD thesis, University of Neuchâtel

  • Briand D, Pham P, De Rooij N (2007) Reliability of freestanding polysilicon microheaters to be used as igniters in solid propellant microthrusters. Sens Actuators A 135(2):329–336

    Article  Google Scholar 

  • Chung GS, Jeong JM (2010) Fabrication of micro heaters on polycrystalline 3C-SiC suspended membranes for gas sensors and their characteristics. Microelectron Eng 87(11):2348–2352. doi:10.1016/j.mee.2010.04.005. http://www.sciencedirect.com/science/article/pii/S0167931710001309

  • Dennis J, Ahmed A, Mohamad N (2010) Design, simulation and modeling of a micromachined high temperature microhotplate for application in trace gas detection. Int J Eng Technol 10(02):89–96

    Google Scholar 

  • Fu X, Dunning JL, Zorman CA, Mehregany M (2005) Measurement of residual stress and elastic modulus of polycrystalline 3C-SiC films deposited by low-pressure chemical vapor deposition. Thin Solid Films 492:195–202. doi:10.1016/j.tsf.2005.07.236. http://www.sciencedirect.com/science/article/pii/S0040609005009879

  • Kang T, Kim S, Cho Y (2002) High-impulse, low-power, digital microthrusters using low boiling temperature liquid propellant with high viscosity fluid plug. Sens Actuators A 97:659–664

    Article  Google Scholar 

  • Kim J, Chung J, Lee D, Kim Y, Kim J, Hwang S, Ju B, Yun S, Park H (2009) Development of temperature feedback control system for piezo-actuated display package. Sens Actuators A 151(2):213–219

    Article  Google Scholar 

  • Lam L, Sakakihara S, Ishizuka K, Takeuchi S, Arata H, Fujita H, Noji H (2008) Loop-mediated isothermal amplification of a single DNA molecule in polyacrylamide gel-based microchamber. Biomed Microdevices 10(4):539–546

    Article  Google Scholar 

  • Lee J, Spadaccini CM, Mukerjee EV, King WP (2009) Suspended membrane single crystal silicon micro hotplate for fifferential scanning calorimetry. In: Proceedings of the 22nd international conference on micro electro mechanical systems, IEEE, pp 852–855

  • Li T, Wu L, Liu Y, Wang L, Wang Y, Wang Y (2006) Micro-heater on membrane with large uniform-temperature area. In: 5th IEEE conference on sensors, 2006, pp 571–575. doi:10.1109/ICSENS.2007.355532

  • Liu F, Carraro C, Chu J, Maboudian R (2009) Residual stress characterization of polycrystalline 3c-sic films on si (100) deposited from methylsilane. J Appl Phys 106(1):013505–013505

    Google Scholar 

  • Lu C, Setiadi D, Udrea F, Milne W, Covington J, Gardner J (2000) 3D Thermo-electro-mechanical simulations of gas sensors based on SOI membranes. Power [W] 500:600

  • Mele L, Rossi T, Riccio M, Iervolino E, Santagata F, Irace A, Breglio G, Creemer J, Sarro P (2011) Electro-thermal analysis of MEMS microhotplates for the optimization of temperature uniformity. Procedia Eng 25(0):387–390. doi:10.1016/j.proeng.2011.12.096. http://www.sciencedirect.com/science/article/pii/S1877705811057651

    Google Scholar 

  • Mele L, Santagata F, Iervolino E, Mihailovic M, Rossi T, Tran A, Schellevis H, Creemer J, Sarro P (2012) A molybdenum MEMS microhotplate for high-temperature operation. Sens Actuators A 188(0):173–180. doi:10.1016/j.sna.2011.11.023. http://www.sciencedirect.com/science/article/pii/S0924424711006820

  • Mendoza-Acevedo S, Reyes-Barranca M (2011) Study for the micromachining optimization of micro hotplates used in MEMS-CMOS gas sensors. In: Proceedings of the 8th international conference on electrical engineering computing science and automatic control (CCE), IEEE, pp 1–6

  • Mo Y, Okawa Y, Inoue K, Natukawa K (2002) Low-voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas sensor array. Sens Actuators A 100(1):94–101. doi:10.1016/S0924-4247(02)00145-0. http://www.sciencedirect.com/science/article/pii/S0924424702001450

  • Naumann F, Ebert M, Hildenbrand J, Moretton E, Peter C, Wollenstein J (2009) Thermal and mechanical design optimisation of a micro machined mid-infrared emitter for optical gas sensing systems. In: Proceedings of the 10th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems, IEEE, pp 1–5

  • Rossi C, Temple-Boyer P, Esteve D (1998) Realization and performance of thin SiO2/SiNx membrane for microheater applications. Sens Actuators A 64(3):241–245. doi:10.1016/S0924-4247(97)01627-0. http://www.sciencedirect.com/science/article/pii/S0924424797016270

  • Saddow SE, La Via F, Severino A, Anzalone R, D’Arrigo G, Locke C, Volinsky A, Piluso N, Carballo J (2010) Growth rate effect on 3C-SiC film residual stress on (100) Si substrates. Mater Sci Forum Trans Tech Publ 645:143–146

    Google Scholar 

  • Saxena G, Paily R (2012) Simulation study of power loss components in a microheater. In: 1st International conference on power and energy in NERIST (ICPEN), pp 1–5. doi:10.1109/ICPEN.2012.6492333

  • Saxena G, Paily R (2013a) Analytical modeling of square microhotplate for gas sensing application. Sens J IEEE 13(12):4851–4859 doi:10.1109/JSEN.2013.2275951

    Article  Google Scholar 

  • Saxena G, Paily R (2013b) Effect of membrane to heater ratio on the performance of square microhotplate. In: 2013 Annual international conference on emerging research areas and 2013 international conference on microelectronics, communications and renewable energy (AICERA/ICMiCR), pp 1–5. doi:10.1109/AICERA-ICMiCR.2013.6575982

  • Schmid U, Seidel H (2008) Effect of high temperature annealing on the electrical performance of titanium/platinum thin films. Thin Solid Films 516(6):898–906. doi:10.1016/j.tsf.2007.04.128. http://www.sciencedirect.com/science/article/pii/S0040609007007353

  • Smith R, Collins S (1990) Thick films of silicon nitride. Sens Actuators A Phys 23(1–3):830–834. doi:10.1016/0924-4247(90)87041-G. http://www.sciencedirect.com/science/article/pii/092442479087041G

  • Solzbacher F, Imawan C, Steffes H, Obermeier E, Eickhoff M (2001) A highly stable SiC based microhotplate NO2 gas-sensor. Sens Actuators B 78(1–3):216–220. doi:10.1016/S0925-4005(01)00815-2. http://www.sciencedirect.com/science/article/pii/S0925400501008152

  • Swart N, Nathan A (1994) Design optimisation of integrated microhotplates. Sens Actuators A 43(1–3):3–10

    Article  Google Scholar 

  • Velmathi G, Ramshanker N, Mohan S (2010) Design, electro-thermal simulation and geometrical optimization of double spiral shaped microheater on a suspended membrane for gas sensing. In: Proceedings of the 36th annual conference on IEEE industrial electronics society, pp 1258–1262. doi:10.1109/IECON.2010.5675550

  • Visvanathan K, Gianchandani Y (2011) Microheaters based on ultrasonic actuation of piezoceramic elements. J Micromech Microeng 21:085030

    Google Scholar 

  • Vrinceanu I, Danyluk S (2002) Measurement of residual stress in single crystal silicon wafers. In: Proceedings of 8th international symposium on advanced packaging materials, 2002, pp 297–301. doi:10.1109/ISAPM.2002.990402

  • Xu L, Li T, Gao X, Wang Y (2011a) Development of a reliable micro-hotplate with low power consumption. Sens J IEEE 11(4):913–919. doi:10.1109/JSEN.2010.2064765

    Article  Google Scholar 

  • Xu L, Xu J, Wang B, Zhang W (2011b) Pool boiling heat transfer on the microheater surface with and without nanoparticles by pulse heating. Int J Heat Mass Transf 54(15):3309–3322

    Google Scholar 

  • Yoon D, Cho YK, Oh K, Kim S, Kim Y, Han J, Lim G (2006) A microfluidic gel valve device using reversible sol–gel transition of methyl cellulose for biomedical application. Microsyst Technol 12:238–246

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to NPMASS, Government of India, for equipping the National MEMS Design Center IIT Guwahati with MEMS design softwares which were used for carrying out this work. The authors gratefully acknowledge Mr. Vijay S. Duryodhan of IIT Bombay and Mr. Dushyant Singh Raghuvanshi of IIT Delhi (India) for their valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, G., Paily, R. Choice of insulation materials and its effect on the performance of square microhotplate. Microsyst Technol 21, 393–399 (2015). https://doi.org/10.1007/s00542-013-2022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-2022-6

Keywords

Navigation