Skip to main content
Log in

Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The use of wide bandgap semiconductor thin films as sensing materials for micro-electrical–mechanical systems (MEMS) sensors has been the subject of much discussion in the academic and industrial communities. The motivation is that such materials are recognized as being suitable for extreme environment applications, namely: high temperatures, intense radiation and corrosive atmospheres. Among the wide bandgap semiconductor materials, aluminum nitride (AlN), zinc oxide (ZnO), diamond-like carbon (DLC) and silicon carbide (SiC) are highlighted due to their inherent sensing properties and compatibility with MEMS fabrication processes. Here we show an overview on the development technologies and applications of AlN, ZnO, DLC and SiC thin films in piezoelectric and piezoresistive MEMS sensors. Emphasis is placed on the influence of the temperature on the piezoelectric and piezoresistive properties of these films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Artieda A, Sandu C, Muralt P (2010) Highly piezoelectric AlN thin films grown on amorphous, insulating substrates. J Vac Sci Technol A: Vac Surf Films 28:390–393

    Article  Google Scholar 

  • Assouar MB, Elmazria O, Le Brizoual L, Alnot P (2002) Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices. Diam Relat Mater 11:413–417

    Article  Google Scholar 

  • Aubert T, Elmazria O, Bardong J, Bruckner G, Assouar B. (2011) Is AlN/Sapphire bilayer structure an alternative to langasite for ultra-high-temperature SAW applications? In: IEEE International Ultrasonics Symposium, Orlando, FL; United States; 18 October 2011

  • Barker A, Crowther S, Rees D (1997) Room-temperature r.f. magnetron sputtered ZnO for electromechanical devices. Sens Actuat A 58:229–235

    Article  Google Scholar 

  • Bender S, Dickert FL, Mokwa W, Pachatz P (2003) Investigations on temperature controlled monolithic integrated surface acoustic wave (SAW) gas sensors. Sens Actuat B: Chem 93:164–168

    Article  Google Scholar 

  • Berg JV, Ziermann R, Reichert W, Obermeier E, Eickhoff M, Krötz G, Thoma U, Boltshauser T, Cavalloni C, Nendza JP (1998) High temperature piezoresistive β-SiC-on-SOI pressure sensor for combustion engines. Mater Sci Forum 264–268:1101–1106

    Article  Google Scholar 

  • Cao Z (2011) Single-material MEMS using polycrystalline diamond. Degree of Doctor of Philosophy, Michigan State University

  • Chalker PR (1997) Review of diamond-like carbon technology. In: Proceedings of the 1997 IEE Colloquium on Extremely Hard Materials for Micromechanics, London, 24 April 1997

  • Chen D, Wang J–J, Liu Q-X, Xu Y, Li D-H, Liu Y-J (2011) Highly sensitive ZnO thin film bulk acoustic resonator for hydrogen detection. J Micromech Microeng 21(11):1–7 Art no. 115018

    Google Scholar 

  • Chung G (2010) Fabrication and characterization of a polycrystalline 3C-SiC piezoresistive micro-pressure sensor. J Korean Phys Soc 56(6):1759–1762

    Article  Google Scholar 

  • Clatterbaugh GV, Trethewey Jr. BR, Roberts JC, Ling SX, Dehghani MM (2013) Engineering systems for extreme environments. Johns Hopkins APL Tech Digest 29:348–361. http://www.jhuapl.edu/techdigest/TD/td2904/Clatterbaugh.pdf. Accessed 20 July 2013

  • Coleman VA, Jagadish C (2006) In: Jagadish C, Pearton SJ (eds) Basic properties and applications of ZnO, zinc oxide bulk, thin films, and nanostructures. Elsevier, Amsterdam, pp 1–20

  • Course Material, University of Dayton (2013) http://academic.udayton.edu/markpatterson/ECT459/Piezoelectric20and20PiezoSensors.pdf. Accessed 27 July 2013

  • Doll JC, Petzold BC, Ninan B, Mullapudi R, Pruitt BL (2010) Aluminum nitride on titanium for CMOS compatible piezoelectric transducers. J Micromech Microeng 20:25008

    Article  Google Scholar 

  • Eickhoff M, Möller H, Kroetz G, Berg JV, Ziermann R (1999) A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates. Sens Actuat A 74:56–59

    Article  Google Scholar 

  • El Hakiki M, Elmazria O, Assouar MB, Mortet V, Le Brizoual L, Vanecek M, Alnot P (2005) ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient. Diam Relat Mater 14:1175–1178

    Article  Google Scholar 

  • Engelmark F, Fuentes G, Katardjiev IV, Harsta A, Smith U, Berg S (2000) Synthesis of highly oriented piezoelectric AlN films by reactive sputter deposition. J Vac Sci Technol A: Vac Surf Films 18:1609–1612

    Article  Google Scholar 

  • Fraga MA (2011) Comparison between the piezoresistive properties of a-SiC films obtained by PECVD and magnetron sputtering. Mater Sci Forum 679–680:217–220

    Article  Google Scholar 

  • Fraga MA, Koberstein LL (2013) Study on the correlation between film composition and piezoresistive properties of PECVD Si x C y thin films. Mater Sci Forum 740–742:431–434

    Article  Google Scholar 

  • Fraga MA, Furlan H, Massi M, Oliveira IC (2010a) Effect of nitrogen doping on piezoresistive properties of a-Si x C y thin film strain gauges. Microsyst Technol 16:925–930

    Article  Google Scholar 

  • Fraga MA, Furlan H, Massi M, Oliveira IC, Koberstein LL (2010b) Fabrication and characterization of a SiC/SiO2/Si piezoresistive pressure sensor. Proc Eng 5:609–612

    Article  Google Scholar 

  • Fraga MA, Pessoa RS, Maciel HS, Massi M (2011) In: Mukherjee M (ed) Recent developments on silicon carbide thin films for piezoresistive sensors applications, silicon carbide—materials, processing and applications in electronic devices, vol 1. InTech, Rijeka, pp 369–388

  • Fraga MA, Massi M, Furlan H, Oliveira IC, Rasia LA, Mateus CFR (2011b) Preliminary evaluation of the influence of the temperature on the performance of a piezoresistive pressure sensor based on a-SiC film. Microsyst Technol 17:477–480

    Article  Google Scholar 

  • Fraga MA, Furlan H, Pessoa RS, Rasia LA, Mateus CFR (2012) Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsyst Technol 18:1027–1033

    Article  Google Scholar 

  • Fulati A, Ali SMU, Riaz M, Amin G, Nur O, Willander M (2009) Miniaturized pH sensors based on zinc oxide nanotubes/nanorods. Sensors 9:8911–8923

    Article  Google Scholar 

  • Gardeniers JGE, Rittersma ZM, Burger GJ (1998) Preferred orientation and piezoelectricity in sputtered ZnO films. J Appl Phys 83:7844–7854

    Article  Google Scholar 

  • Greve DW, Zheng P, Chin T-L, Oppenheim IJ, Malone V (2011) Wireless harsh-environment oxygen sensors. In: 10th IEEE SENSORS Conference 2011, SENSORS 2011, Limerick, 28 October 2011

  • Hall DA, Kutepova VP (1997) Processing of ZnO thin films for SAW devices. In: IEEE Colloquium on electro-technical ceramics—processing, properties and applications. London, 14 November 1997

  • Hariz A (1999) Wide-bandgap materials for novel electronic devices and MEMS. In: Proceedings of SPIE 3891, electronics and structures for MEMS, 82, September 29, 1999

  • Hoang S, Chung G (2009) Surface acoustic wave characteristics of AlN thin films grown on a polycrystalline 3C-SiC buffer layer. Microelectron Eng 86:2149–2152

    Article  Google Scholar 

  • Horsfall A, Wright N (2006) Sensing the extreme. Phys World 19(5):34–39

    Google Scholar 

  • Jakovlev O, Fuchs T, Rohlfing F, Seidel H (2013) Piezoresistivity and electrical conductivity of SiC thin films deposited by high temperature PECVD. Mater Sci Forum 740–742:657–660

    Article  Google Scholar 

  • Kano K, Arakawa K, Takeuchi Y, Akiyama M, Ueno N, Kawahara N (2006) Temperature dependence of piezoelectric properties of sputtered AlN on silicon substrate. Sens Actuat A 130–131:397–402

    Article  Google Scholar 

  • Khine L, Tsai JM, Heidari A, Yoon Y-J (2011) Piezoelectric MEMS resonant gas sensor for defence applications. In: Defense Science Research Conference and Expo Singapore, 3 August 2011

  • Kishi K, Ooishi Y, Noma H, Ushijima E, Ueno N, Akiyama M, Tabaru T (2006) Measurement of output voltage of aluminum nitride thin film as a pressure sensor at high temperature. J Eur Ceram Soc 26:3425–3430

    Article  Google Scholar 

  • Koppert R, Goettel D, Freitag-Weber O, Schultes G (2009) Nickel containing diamond like carbon thin films. Solid State Sci 11:1797–1800

    Article  Google Scholar 

  • Krupa K (2009) Opto-numerical analysis of AlN piezoelectric thin film operating as an actuation layer in MEMS cantilevers. Ph.D. thesis, Warsaw University of Technology

  • Kutepova VP, Hall DA (1998) Effect of the sputtering parameters on the growth and piezoelectric properties of zinc oxide thin films. In: Proceedings of the IEEE Ultrasonics Symposium, 5 October 1998, pp 213–216

  • Li C, Guo W, Kong Y, Gao H (2007) Size-dependent piezoelectricity in zinc oxide nanofilms from first-principles calculations. Appl Phys Lett 90(3):1–3 Art no. 033108

    Google Scholar 

  • Liaw HM, Hickernell FS (1995) Characterization of sputtered polycrystalline aluminum nitride on silicon by surface acoustic wave measurements. IEEE Trans Ultrason Ferroelectron Freq Control 42:404–409

    Article  Google Scholar 

  • Luo JK, Fu YQ, Le HR, Williams JA, Spearing SM, Milne WI (2007) Diamond and diamond-like carbon MEMS. J Micromech Microeng 17:S147–S163

    Article  Google Scholar 

  • Lüthje H, Biehl S, Bandorf R, Sick J-H, Peiner E, Tibrewala A (2005) Preparation and characterization of multifunctional thin film sensors based on amorphous diamond-like-carbon. In: 13th International Conference on Solid-State Sensors and Actuators and Microsystems, TRANSDUCERS ‘05, Seoul, South Korea, 5 June 2005

  • Medeiros HS, Pessoa RS, Fraga MA, Santos LV, Maciel HS, Massi M, Sobrinho ASS (2012) Argon incorporation on silicon carbide thin films deposited by bias co-sputtering technique. Mater Res Soc Symp Proc 1433:1–6

    Google Scholar 

  • Meng X, Yang C, Chen Q, Yang J (2013a) Influence of the PZT film thickness on the structure and electrical properties of the ZnO/PZT heterostructure. J Mater Sci: Mater Electron 24:160–165

    Google Scholar 

  • Meng X, Yang C, Chen O, Gao Y, Yang J (2013b) Preparation of highly c-axis oriented AlN films on Si substrate with ZnO buffer layer by the DC magnetron sputtering. Mater Lett 90:49–52

    Article  Google Scholar 

  • Meškinis Š, Gudaitis R, Kopustinskas V, Tamulevičius S (2008) Electrical and piezoresistive properties of ion beam deposited DLC films. Appl Surf Sci 254:5252–5256

    Article  Google Scholar 

  • Momeni K, Asthana A, Prasad A, Yap YK, Yassar RS (2012) Structural inhomogeneity and piezoelectric enhancement in ZnO nanobelts. Appl Phys A Mater Sci Process 109:95–100

    Article  Google Scholar 

  • Muralt P (2008) Recent progress in materials issues for piezoelectric MEMS. J Am Ceram Soc 91:1385–1396

    Article  Google Scholar 

  • Muralt P, Antifacos J, Cantoni M, Lanz R, Martin F (2005) Is there a better material for thin film BAW applications than AlN? In: IEEE Ultrasonics Symposium, 21 September 2005, pp 315–320

  • Ooishi Y, Kishi K, Akiyama M, Noma H, Morofuji Y (2006) Wide-band and high temperature piezoelectric response of aluminum nitride thin films prepared on silicon substrates. J Ceram Soc Jpn 114:722–724

    Article  Google Scholar 

  • Oon HS, Cheong KY (2013) Recent development of gallium oxide thin film on GaN. Mater Sci Semicond Process 16:1217–1231

    Article  Google Scholar 

  • Park Y-W, Yoon S-J, Lee J-G, Baik Y-J, Kim H-J, Jung H-J, Choi W-K, Cho B-H, Park C-Y (1999) Characteristics of ZnO/diamond thin films prepared by RF magnetron sputtering. J Korean Phys Soc 35:S517–S520

    Google Scholar 

  • Peiner E, Tibrewala A, Lüthje H, Bandorf R, Biehl S, Doering L (2006a) Piezoresitive diamond-like carbon micro strain gauges. In: 18th IMEKO World Congress: metrology for a sustainable development, Rio de Janeiro, Brazil, 17 September 2006 through 22 September 2006

  • Peiner E, Tibrewala A, Bandorf R, Biehl S, Lüthje H, Doering L (2006b) Micro force sensor with piezoresistive amorphous carbon strain gauge. Sens Actuat A 130–131:75–82

    Article  Google Scholar 

  • Petersen M, Bandorf R, Bräuer G, Klages C-P (2012) Diamond-like carbon films as piezoresistors in highly sensitive force sensors. Diam Relat Mater 26:50–54

    Article  Google Scholar 

  • Phan D-T, Chung G-S (2012) Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode. Curr Appl Phys 12:210–213

    Article  Google Scholar 

  • Qiu X, Yu H (2011) ZnO based film bulk acoustic resonator for environment monitoring. Micro Nanosyst 3:104–110

    Article  Google Scholar 

  • Reddy JD, Volinsky AA, Frewin CL, Locke C, Saddow SE (2008) Mechanical properties of 3C-SiC films for MEMS applications. Mater Res Soc Symp Proc 1049:1–8

    Google Scholar 

  • Reyes PI, Li J, Duan Z, Yang X, Cai Y, Huang Q, Lu Y (2013) ZnO surface acoustic wave sensors built on zein-coated flexible food packages. Sens Lett 11:539–544

    Article  Google Scholar 

  • Sah RE, Kirste L, Baeumler M, Hiesinger P, Cimalla V, Lebedev V, Knöbber F, Bludau O, Röhlig CC, Baumann H (2010) Investigation of stress in AlN thin films for piezoelectric MEMS nanotechnology: electronics, devices, fabrication, MEMS, Fluidics and computational—2010 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2010, Anaheim, United States, 21 June 2010

  • Santra TS, Bhattacharyya TK, Patel P, Tseng FG, Barik TK (2012) In: Nazmul I (ed) Diamond, diamond-like carbon (DLC) and diamond-like nanocomposite (DLN) thin films for MEMS applications, microelectromechanical systems and devices. InTech, Rijeka

  • Sanz-Hervás A, Clement M, Iborra E, Vergara L, Olivares J, Sangrador J (2006) Degradation of the piezoelectric response of sputtered c-axis AlN thin films with traces of non-(0002) X-ray diffraction peaks. Appl Phys Lett 88(16):1–3 Art no. 161915

    Google Scholar 

  • Sayago I, Aleixandre M, Are′s L, Fernandez MJ, Santos JP, Gutierrez JJ, Horrillo MC (2005) The effect of the oxygen concentration and the rf power on the zinc oxide films properties deposited by magnetron sputtering. Appl Surf Sci 245:273–280

    Article  Google Scholar 

  • Senesky DG, Jamshidi B, Cheng KB, Pisano AP (2009) Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review. IEEE Sens J 9:1472–1478

    Article  Google Scholar 

  • Shor JS, Goldstein D, Kurtz AD (1999) Characterization of n-type β-SiC as a piezoresistor. IEEE Trans Electron Dev 40:1093–1099

    Article  Google Scholar 

  • Sohi ANA (2013) Multifunctional MEMS pressure and temperature sensor for harsh environment applications. Degree of Doctor of Philosophy. University of Waterloo, Waterloo

    Google Scholar 

  • Takeno T, Miki H, Sugawara T, Hoshi Y, Takagi T (2008) A DLC/W-DLC multilayered structure for strain sensing applications. Diam Relat Mater 17:713–716

    Article  Google Scholar 

  • Tamulevičius S, Meškinis S, Šlapikas K, Vasiliauskas A, Gudaitis R, Andrulevičius M, Tamulevičienė A, Niaura G (2013) Piezoresistive properties of amorphous carbon based nanocomposite thin films deposited by plasma assisted methods. Thin Solid Films 538:78–84

    Article  Google Scholar 

  • Tibrewala A, Phataralaoha A, Peiner E, Bandorf R, Büttgenbach S (2007) Piezoresistive effect in DLC films and silicon. In: NSTI nanotechnology conference and trade show—NSTI Nanotech; Santa Clara, United States, 20 May 2007

  • Tiron V, Coman T, Sirghi L, Popa G (2013) Atomic force microscopy investigation of piezoelectric response of ZnO thin films deposited by HIPIMS. J Optoelectron Adv Mater 15:77–81

    Google Scholar 

  • Trolier-Mckinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12:7–17

    Article  Google Scholar 

  • Vatansever D, Siores E, Shah T (2012) In: Bharat Raj S (ed) Alternative resources for renewable energy: piezoelectric and photovoltaic smart structures, global warming—impacts and future perspective. InTech, Rijeka

  • Vergara L, Clement M, Iborra E, Sanz-Hervás A, García López J, Morilla Y, Sangrador J, Respaldiza MA (2004) Influence of oxygen and argon on the crystal quality and piezoelectric response of AlN sputtered thin films. Diam Relat Mater 13:839–842

    Article  Google Scholar 

  • Vergara L, Olivares J, Iborra E, Clement M, Sanz-Hervás A, Sangrador J (2006) Effect of rapid thermal annealing on the crystal quality and the piezoelectric response of polycrystalline AlN films. Thin Solid Films 515:1814–1818

    Article  Google Scholar 

  • Wacogne B, Roe MP, Pattinson TJ, Pannell CN (1994) Effective piezoelectric activity of zinc oxide films grown by radio-frequency planar magnetron sputtering. Appl Phys Lett 67:1612

    Google Scholar 

  • Wang P, Du H, Shen S, Zhang M, Liu B (2012a) Preparation and characterization of ZnO microcantilever for nanoactuation. Nanoscale Res Lett 7:1–5

    Article  Google Scholar 

  • Wang P, Du H, Shen S, Zhang M, Liu B (2012b) Deposition, characterization and optimization of zinc oxide thin film for piezoelectric cantilevers. Appl Surf Sci 24:9510–9517

    Article  Google Scholar 

  • Werner M, Gluche P, Adamschik M, Kohn E, Fecht H-J (1998) Review on diamond based piezoresistive sensors. In: IEEE International Symposium on Industrial Electronics, Pretoria, 10 July 1998

  • Williams MD, Griffin BA, Reagan TN, Underbrink JR, Sheplak M (2012) An AlN MEMS piezoelectric microphone for aeroacoustic applications. J Microelectromech Syst 21:270–283

    Article  Google Scholar 

  • Wu CH, Zorman CA, Mehregany M (2006) Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications. IEEE Sens J 6:316–324

    Article  Google Scholar 

  • Yang JA (2013) Harsh environment wireless pressure sensing solution utilizing high temperature electronics. Sensors 13:2719–2734

    Article  Google Scholar 

  • Zalazar M, Gurman P, Park J, Kim D, Hong S, Stan L, Divan R, Czaplewski D, Auciello O (2013) Integration of piezoelectric aluminum nitride and ultrananocrystalline diamond films for implantable biomedical microelectromechanical devices. Appl Phys Lett 102(10):1–5 Art no. 104101

    Google Scholar 

  • Ziermann R, Berg JV, Obermeier E, Wischmeyer F, Niemann E, Möller H, Eickhoff M, Krötz G (1999) High temperature piezoresistive β-SiC-on-SOI pressure sensor with on chip SiC thermistor. Mater Sci Eng B 61–62:576–578

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fraga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraga, M.A., Furlan, H., Pessoa, R.S. et al. Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview. Microsyst Technol 20, 9–21 (2014). https://doi.org/10.1007/s00542-013-2029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-2029-z

Keywords

Navigation