Skip to main content
Log in

Resist evaluation for proton beam writing, Ni mold fabrication and nano-replication

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Proton beam writing (PBW) is a new direct-write technique which has shown great potential to fabricate structures down to 20 nm level in resist material. Protons can be accelerated up to a high energy (3.5 MeV) at Centre for Ion Beam Applications. Because the mass of a proton is much larger than the mass of an electron (mp:me = 1,800:1), the energy of the secondary electrons is very small compared with secondary electrons generated by electron beam lithography. Therefore, a proton will travel along a straight path into resist and secondary electrons will only expose the resist within several nanometers around the path of the proton. PBW is capable of fabricating structures with very straight, vertical and smooth sidewalls without proximity effect. This is very important when combining PBW with Ni electroplating and nanoimprinting as well as injection molding. High quality Ni molds with smooth and vertical side walls are critical in nanoimprint lithography and injection molding. In our experiments, several new resists including AR-P 3250, a mixture of AR-P 3250 and AR 300-12, and ma-N 2401 are tested with PBW for the production of high aspect ratio Ni molds and thermoplastic replication with these molds. High aspect ratio structures (up to 7) are fabricated at a width of 500 nm in Ni molds. The structures are transferred to plastic via nanoimprinting and injection molding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adesida I (1985) Fine line lithography using ion beams. Nucl Instrum Methods Phys Res B 7–8:923–928

    Article  Google Scholar 

  • Ansari K, van Kan JA, Bettiol AA, Watt F (2004) Fabrication of high aspect ratio 100 nm metallic stamps for nanoimprint lithography using proton beam writing. Appl Phys Lett 85:476–478

    Article  Google Scholar 

  • Biersack J, Haggmark LG (1980) A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl Instrum Methods 174:257–269

    Article  Google Scholar 

  • Brenner KH, Frank M, Kufner M, Kufner S (1990) H+ lithography for 3-D integration of optical circuits, Appl Opt 29(26)

  • Dhima K, Steinberg C, Möllenbeck S, Mayer A, Scheer HC (2011) Thermal nanoimprint (T-NIL) with photoresists for hybrid lithography. Proc SPIE 7985:798506-1

    Google Scholar 

  • Dutta RK, van Kan JA, Bettiol AA, Watt F (2007) Polymer microlens replication by nanoimprint lithography using proton beam fabricated Ni stamp. Nucl Instrum Methods Phys Res B 260:464–467

    Article  Google Scholar 

  • Gonin Y, Munnik F, Benninger F, Dias F, Mikhaílov S (2004) J Vac Sci Technol B 22:1982

    Article  Google Scholar 

  • Lee H-S, Yang H-H, Ra S, Yoon J-B (2011) Fabrication of a large-scale Ni stamp using a multi-level SU-8 photoresist mold for advanced printed circuit board. J Micromech Microeng 21:065026

    Article  Google Scholar 

  • Liu Fan, Boon Tan Kheng, Malar P, bikkarolla SK, van Kan JA (2013) Fabrication of nickel molds using proton beam writing for micro/nano fluidic devices. Microelectron Eng 102:36–39

    Article  Google Scholar 

  • Liu NN, Shao P, Kulkarni SR, Zhao JH, and van Kan JA (2010) Nickel injection mould fabrication via proton beam writing and UV lithography. Key Eng Mater 447–448:188–192

    Google Scholar 

  • Malar P, Jianhong Zhao, van Kan JA (2012) Fabrication of metallic stamps for injection moulding applications by combining proton beam writing and UV lithography. Appl Surf Sci 258:4191–4194

    Article  Google Scholar 

  • Menzel F, Spemann D, Petriconi S, Lenzner J, Butz T (2007) Proton beam writing of microstructures at the ion nanoprobe LIPSION. Nucl Instrum Methods Phys Res B 260:419

    Article  Google Scholar 

  • Mistry P, Gomez MI, Smith RC, Thomson D, Grime GW, Webb RP, Gwilliam R, Jeynes C, Cansell A, Merchant M, Kirkby KJ (2007) Maskless proton beam writing in gallium arsenide. Nucl Instrum Methods Phys Res B 260:437–441

    Article  Google Scholar 

  • Oh SH, Cho SU, Kim CS, Han YG, Cho C-S, Jeong MY (2011) Fabrication of nickel stamp with improved sidewall roughness for optical devices. Microelectron Eng 88:2900–2907

    Article  Google Scholar 

  • Rajta I, Gomez MI, Abraham MH, Kiss ÁZ (2003) Proton beam micromachining on PMMA, Foturan and CR-39 materials. Nucl Instrum Methods Phys Res B 210:260–265

    Article  Google Scholar 

  • Rajta I, Baradács E, Bettiol AA, Csige I, Tőkési K, Budai L, Kiss ÁZ (2005) Optimization of particle fluence in micromachining of CR-39. Nucl Instrum Methods Phys Res B 231:384–388

    Article  Google Scholar 

  • Rajta I, Chatzichristidi M, Baradács E, cserháti C, Raptis I, Manoli K, Valamontes ES (2007) Proton beam micromachined buried microchannels in negative tone resist materials. Nucl Instrum Methods Phys Res B 260:414

    Article  Google Scholar 

  • Simcic J, Pelicon P, Rupnik Z, Mihelic M, Razzpet A, Jenko D, Macek M (2005) 3D micromachining of SU-8 polymer with proton microbeam. Nucl Instrum Methods Phys Res B 241:479

    Article  Google Scholar 

  • Springham SV, Osipowicz T, Sanchez JL, Gan LH, Watt F (1997) Micromachining using deep ion beam lithography. Nucl Instrum Methods Phys Res B 130:155–159

    Article  Google Scholar 

  • Teo EJ, Liu MH, Breese MBH, Tavernier EP, Bettiol AA, Blackwood DJ, Watt F (2004) Fabrication of silicon microstructures using a high-energy ion beam. In: Proceeding of SPIE 5347, Micromachining Technology for Micro-Optics and Nano-Optics II, p 264

  • Udalagama CNB, Bettiol AA, Watt F (2007) A Monte Carlo study of the extent of proximity effects in e-beam and p-beam writing of PMMA. Nucl Instrum Methods Phys Res B 260:384–389

    Article  Google Scholar 

  • Valamontes E, Chatzichristidi M, Tsikrikas N, Goustouridis D, Raptis I, Potiriadis C, van Kan JA, Watt F (2008) Realization and simulation of high-aspect-ratio micro/nanostructures by proton beam writing. Jpn J Appl Phys 47:8600–8605

    Google Scholar 

  • van Kan JA, Sanchez JL, Xu B, Osipowicz T, Watt F (1999) Resist materials for proton micromachining. Nucl Instrum Methods Phys Res B 158:179–184

    Article  Google Scholar 

  • van Kan JA, Sum TC, Osipowicz T, Watt F (2000) Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits. Nucl Instrum Methods Phys Res B 161:366–370

    Article  Google Scholar 

  • van Kan JA, Bettiol AA, Watt F (2003) Three dimensional nanolithography using proton beam writing. Appl Phys Lett 83(8):1629

    Article  Google Scholar 

  • van Kan JA, Bettiol AA, Watt F (2006) Proton beam writing of 3D nanostructures in hydrogen SilsesQuioxane. Nano Lett 6:579–582

    Article  Google Scholar 

  • van Kan JA, Bettiol AA, Chiam SY, Saifullah MSM, Subramanian KRV, Welland ME, Watt F (2007) New resists for proton beam writing. Nucl Instrum Methods Phys Res B 260:460–463

    Article  Google Scholar 

  • van Kan JA, Zhang F, Chiam SY, Osipowicz T, Bettiol AA, Watt F (2008) Proton beam writing: a platform technology for nanowire production. Microsyst Technol 14:1343

    Article  Google Scholar 

  • van Kan JA, Shao PG, Wang YH, Malar P (2011) Proton beam writing a platform technology for high quality three dimensional metal mold fabrication for nanofluidic applications. Microsyst Technol 17:1519–1527

    Article  Google Scholar 

  • van Kan JA, Malar P, de Vera Armin Baysic (2012) The second generation Singapore high resolution proton beam writing facility. Rev Sci Instrum 83:902

    Article  Google Scholar 

  • Voigt A, Elsner H, Meyer GH, Gruetzner G (1999) Nanometer patterning using ma-N 2400 series DUV negative photoresist and electron beam lithography. SPIE 3676:485

    Google Scholar 

  • Wang YH, Malar P, Zhao J, van Kan JA (2013) Resist evaluation for Ni mold fabrication and proton beam writing. Microelectron Eng 102:40–43

    Article  Google Scholar 

  • Watt F, van Kan JA, Rajta I, Bettiol AA, Choo TF, Breese MBH, Osipowicz T (2003) The National University of Singapore high energy ion nano-probe facility: performance tests. Nucl Instrum Methods Phys Res B 210:14–20

    Article  Google Scholar 

  • Yao Y, Santhana Raman P, van Kan JA (2014) Orthogonal and fine lithographic structures attained from the next generation proton beam writing facility. Microsyst Technol. doi:10.1007/s00542-014-2066-2

  • Ynsa MD, Shao P, Kulkarni SR, Liu NN, van Kan JA (2011) Exposure parameters in proton beam writing for KMPR and EPO Core negative tone photoresists. Nucl Instrum Methods Phys Res B 269:2409–2412

    Article  Google Scholar 

  • Zheng Cui (2005) Micro-nanofabrication technologies and applications. Springer, New York

    Google Scholar 

  • Ziegler JF (1999) The stropping of energetic light ions in elemental mater. J Appl Phys 85:1249–1272

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from US air force, Japan office and MOE Singapore (R-144-000-312-112). We also acknowledge Dr. Zhao Jianhong’s help with injection molding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. van Kan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y.H., Malar, P. & van Kan, J.A. Resist evaluation for proton beam writing, Ni mold fabrication and nano-replication. Microsyst Technol 20, 2079–2088 (2014). https://doi.org/10.1007/s00542-014-2070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2070-6

Keywords

Navigation