Skip to main content
Log in

Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

An Erratum to this article was published on 10 August 2014

Abstract

Over the past four decades, the field of silicon piezoresistive pressure sensors has undergone a major revolution in terms of design methodology and fabrication processes. Cutting edge fabrication technologies have resulted in improved precision in key factors like dimensions of diaphragm and placement of piezoresistors. Considering the unique nature of each sensor and the trade-offs in design, it is not feasible to follow a standard design approach. Thus, it is useful to derive the specific design from a number of important factors to arrive at the ‘ideal’ design. In this paper, we critically review and analyze the various design considerations and principles for silicon piezoresistive pressure sensor. We also report the effect of these considerations on the sensor output taking help of various CAD tools. Keeping in view the accuracy of state-of-the-art fabrication tools and the stringent demands of the present day market, it has become important to include many of these design aspects. Modelling using analytical expressions for thin plates has also been looked into as it gives a quick guideline and estimation of critical parameters before detailed finite element method analysis. Wherever possible, fabrication imperfections and their effects have been discussed. Dependency of piezoresistive coefficients on temperature and doping concentration, the effect of clamping condition of diaphragms and fabrication using wet bulk micromachining is also analyzed. Silicon-on-insulator based sensors along with innovative design strategies, and future trends have also been discussed. This paper will serve as a quick and comprehensive guide for pressure sensor developers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  • Abeysinghe DC, Dasgupta S, Boyd JT, Jackson HE (2001) A novel MEMS pressure sensor fabricated on an optical fiber. IEEE Photonics Technol Lett 13(9):993–995

    Article  Google Scholar 

  • Akhtar J, Dixit BB, Pant BD, Deshwal VP, Joshi BC (2003) A process to control diaphragm thickness with a provision for back to front alignment in the fabrication of polysilicon piezoresistive pressure sensor. Sens Rev 23(4):311–315

    Article  Google Scholar 

  • Aravamudhan S (2007) Development of micro/nanosensor elements and packaging techniques for oceanography. Ph.d. thesis, University of South Florida

  • Armbruster S, Schäfer F, Lammel G, Artmann H, Schelling C, Benzel H, Finkbeiner S, Lärmer F, Ruther P, Paul O (2003) A novel micromachining process for the fabrication of monocrystalline Si-membranes using porous silicon. In: Proceedings of 12th international conference on solid-state sensors, actuators, and microsystems, Boston, pp 246–249

  • Bakhoum EG, Cheng MHM (2010) Capacitive pressure sensor with very large dynamic range. IEEE Trans Compon Packag Technol 33(1):79–83

    Article  Google Scholar 

  • Bao M (2005) Analysis and design principles of MEMS devices. Elsevier, Amsterdam

    Google Scholar 

  • Barlian AA, Park WT, Mallon JR Jr, Rastegar AJ, Pruitt BL (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97(3):513–552

    Article  Google Scholar 

  • Barwicz T, Klein L, Koester SJ, Hamann H (2010) Silicon nanowire piezoresistance: impact of surface crystallographic orientation. Appl Phys Lett 97(2):023110-1–023110-3

  • Bhat KN (2007) Silicon micromachined pressure sensors. J Indian Inst Sci 87(1):115–131

    Google Scholar 

  • Bian T, Yulong Z, Jiang Z, Zhang L, Liao N, Lio Y, Meng C (2009) The analysis and structural design of micro SOI pressure sensors. In: Proceedings of the 4th international conference on nano/micro eng. and molecular systems, Shenzhen, pp 55–58

  • Bistué G, Elizalde JG, Garcia-Alonso S, Castaño E, Gracia FJ, Garcia-Alonso A (1997) A design tool for pressure microsensors based on FEM simulations. Sens Actuators A 62:591–594

    Article  Google Scholar 

  • Blasquez G, Naciri Y, Blondel P, Moussa NB, Pons P (1987) Static response of miniature capacitive pressure sensor with square or rectangular silicon diaphragm. Rev Phys Appl 22(7):505–510

    Article  Google Scholar 

  • Bruel M (1995) Silicon on insulator material technology. Electron Lett 31:1201–1203

    Article  Google Scholar 

  • Bsoul A, Ali MSM, Takahata K (2011) Piezoresistive pressure sensor using vertically aligned carbon-nanotube forests. Electron Lett 47(14):807–808

    Article  Google Scholar 

  • Burg BR, Helbling R, Hierold C, Poulikakos D (2011) Piezoresistive pressure sensors with parallel integration of individual single-walled carbon nanotube. J Appl Phys 109:64310-1–64310-6

    Article  Google Scholar 

  • Bustillo JM, Howe RT, Muller RS (1998) Surface micromachining for microelectromechanical systems. Proc IEEE 86(8):1552–1574

    Article  Google Scholar 

  • Cao JX, Gong XG, Wu RQ (2007) Giant piezoresistance and its origin in Si(111) nanowires: first-principles calculations. Phy Rev B 75:233–302

    Google Scholar 

  • Celler GK, Cristoloveanu S (2003) Frontiers of silicon-on-insulator. J Appl Phys 93:4955–4978

    Article  Google Scholar 

  • Chau HL, Wise KD (1987) Scaling limits in batch-fabricated silicon pressure sensors. IEEE Trans Electron Devices 34(4):850–858

    Article  Google Scholar 

  • Chau HL, Wise KD (1988) An ultraminiature solid-state pressure sensor for a cardiovascular catheter. IEEE Trans Electron Devices 35(12):2355–2362

    Article  Google Scholar 

  • Chen KS, Ayón AA, Zhang X, Sperling SM (2002) Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE). J Microelectromech Syst 11(3):264–275

    Article  Google Scholar 

  • Chen S, Zhu MQ, Ma BH, Yuan WZ (2008) Design and optimization of micro piezoresistive pressure sensor. In: Proceedings of the 3rd IEEE international conference on nano/micro engineered and molecular systems, pp 351–356

  • Chen W, Zheng X, Chen X (2010) Optimized design of piezoresistive pressure sensor for improved linearity and sensitivity. In: Proceedings of 5th IEEE international conference on nano/micro engineered and molecular systems, pp 561–564

  • Cho ST, Najafi K, Wise KD (1992) Internal stress compensation and scaling in ultrasensitive silicon pressure sensors. IEEE Trans Electron Devices 39(4):836–842

    Article  Google Scholar 

  • Chung GS (2010) Fabrication and characterization of a polycrystalline 3C-SiC piezoresistive micro-pressure Sensor. J Korean Phys Soc 56(6):1759–1762

    Article  Google Scholar 

  • Chung GS, Kawahito S, Ishida M, Nakamura T, Kawashima M, Suzaki T (1991) High-performance pressure sensors using double silicon-on-insulator structures. Rev Sci Instrum 62(5):1341–1346

    Article  Google Scholar 

  • Clark SK, Wise KD (1979) Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors. IEEE Trans Electron Devices 26(12):1887–1896

    Article  Google Scholar 

  • Cohen ML, Bergstresser TK (1966) Band structure and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures. Phys Rev 141(2):789–796

    Article  Google Scholar 

  • Eaton WP, Smith JH (1995) Characterization of a surface micromachined pressure sensor array. In: Proceedings of the SPIE 2642, pp 256–264

  • Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6(5):530–539

    Article  Google Scholar 

  • Elgamel HE (1995) Closed-form expressions for the relationships between stress, diaphragm deflection, and resistance change with pressure in silicon piezoresistive pressure sensors. Sens Actuators A 50:17–22

    Article  Google Scholar 

  • Esashi M, Sugiyama S, Ikeda K, Wang Y, Miyashita H (1998) Vacuum-sealed silicon micromachined pressure sensors. Proc IEEE 86(8):1627–1639

    Article  Google Scholar 

  • Firtat B, Moldovan C, Iosub R, Necula C, Nisulescu M (2007) Differential piezoresistive pressure sensor. In: Proceedings of IEEE semiconductor conference, pp 87–90

  • Fisher G, Seacrist MR, Standley RW (2012) Silicon crystal growth and wafer technologies. Proc IEEE 100:1454–1474

    Article  Google Scholar 

  • Folkmer B, Steiner P, Lang W (1996) Silicon nitride membrane sensors with monocrystalline transducers. Sens Actuators A 54:488–492

    Article  Google Scholar 

  • Fraga MA, Furlan H, Massi M, Oliveira IC, Koberstein LL (2010) Fabrication and characterization of a SiC/SiO2/Si piezoresistive pressure sensor. Procedia Eng 5:609–612

    Article  Google Scholar 

  • Freescale Semiconductor (2010) 100 kPa on-chip temperature compensated silicon pressure sensors. MPX2102 datasheet

  • Fujitsuka N, Hamaguchi K, Funabashi H, Kawasaki E, Fukada T (2004) Aluminum protected silicon anisotropic etching technique using TMAH with an oxidizing agent and dissolved Si. R&D Rev Toyota CRDL 39(2):34–40

    Google Scholar 

  • Fuller LF, Surdigo S (2003) Bulk micromachined pressure sensor. In: Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium, pp 317–320

  • Gong SC (2004) Effects of pressure sensor dimensions on process window of membrane thickness. Sens Actuators A 112:286–290

    Article  Google Scholar 

  • Gong SC, Lee C (2001) Analytical solutions of sensitivity for pressure microsensors. IEEE Sens J 1(4):340–344

    Article  Google Scholar 

  • Guo S, Eriksen H, Childress K, Fink A, Hoffman M (2009) High temperature smart-cut SOI pressure sensor. Sens Actuators A 154:255–260

    Article  Google Scholar 

  • Gurtler RW, Zwernemann RW (1974) Polycrystalline silicon pressure sensor. US Patent 3,858,150

  • He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nano 1:42–46

    Article  Google Scholar 

  • Henning AK, Patel S, Selser M, Cozad BA (2004) Factors affecting silicon membrane burst strength. Proc SPIE 5343:145–153

    Article  Google Scholar 

  • Herrera-May AL, Soto-Cruz BS, López-Huerta F, Aguilera Cortés LA (2009) Electromechanical analysis of a piezoresistive pressure micro-sensor for low-pressure biomedical applications. Rev Mex De Física 55:14–24

    Google Scholar 

  • Herring C (1955) Transport properties of a many-valley semiconductor. Bell Syst Tech J 34:237–296

    Article  Google Scholar 

  • Honeywell (2011) Pressure sensor glossary of terms. Technical note, 008200-2-EN

  • Hooge FN, Kleinpenning TGM, Vandamme LKJ (1981) Experimental studies on 1/f noise. Rep Prog Phys 44:479–532

    Article  Google Scholar 

  • Hooke R (1969) Approximate analysis of the large deflection elastic behaviour of clamped, uniformly loaded, rectangular plates. J Mech Eng Sci 11:256–268

    Article  Google Scholar 

  • Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? J Microelectomech Syst 19:229–238

    Article  Google Scholar 

  • Ishida M (2001) SOI sensors and epitaxial MEMS. J Indian Inst Sci 81:619–626

    Google Scholar 

  • Jiang Z, Zhao L, Zhao Y, Prewett PD, Jiang K (2009) Research and evaluation of a high temperature pressure sensor chip. In: Proceedings of the 4th international conference on nano/micro engineered and molecular systems, Shenzhen, pp 661–665

  • Jin J, Zhou Z (2002) Simulation and modeling of micro pressure sensor array. In: Proceedings of the international conference on MSM, San Juan, pp 306–309

  • Judy JW (2001) Microelectromechanical systems (MEMS): fabrication, design and applications. IOP Smart Mater Struct 10:1115–1134

    Article  Google Scholar 

  • Kähler J, Stranz A, Doering L, Merzsch S, Heuck N, Waag A, Peiner E (2012) Fabrication, packaging, and characterization of p-SOI Wheatstone bridges for harsh environments. Microsyst Technol 18:869–878

    Article  Google Scholar 

  • Kanda Y (1982) A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans Electron Devices 29:64–70

    Article  Google Scholar 

  • Kanda Y (1991) Piezoresistance effect of silicon. Sens Actuators A 28:83–91

    Article  Google Scholar 

  • Kasap SO (2006) Principles of electronic materials and devices, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Kerrour F, Hobar F (2006) A novel numerical approach for the modelling of the square shaped silicon membrane. J Semicond Phys Quantum Electron Optoelectron 9(4):52–57

  • Kerrour F, Hobar F (2007) A new numerical approach for modelling of silicon piezoresistive sensors. Sci Technol B 26:7–12

  • Kim SC, Wise KD (1983) Temperature sensitivity in silicon piezoresistive pressure transducers. IEEE Trans Electron Devices 30(7):802–810

    Article  Google Scholar 

  • Koumela A, Mercier D, Dupré C, Jourdan G, Marcoux C, Ollier E, Purcell ST, Duraffourg L (2011) Piezoresistance of top-down suspended Si nanowires. Nanotechnology 22(39):395701-1–395701-8

  • Kovacs GTA, Maluf NI, Petersen KE (1998) Bulk micromachining of silicon. Proc IEEE 86(8):1536–1551

    Article  Google Scholar 

  • Krechmery RL, Finefrock MD (1988) Pressure transducer with integral digital temperature compensation. US Patent 4,765,188

  • Kumar SS, Pant BD (2012) Design of piezoresistive MEMS absolute pressure sensor. In: Proceedings of the SPIE 8549

  • Kumar SS, Pant BD (2013a) Effect of temperature on etch rate and undercutting of (100) silicon using 25 % TMAH. In: Proceedings of the international conference on emerging technologies-micro to nano (ETMN), Goa

  • Kumar SS, Pant BD (2013b) Design considerations for SOI piezoresistive pressure sensor. In: Proceedings of the 6th ISSS nat. conference on MEMS, smart material, structures and systems, Pune

  • Kumar VV, Dasgupta A, Bhat KN (2006) Process optimization for monolithic integration of piezoresistive pressure sensor and MOSFET amplifier with SOI approach. J Phys Conf Ser 34:210–215

    Article  Google Scholar 

  • Kumar SS, Ojha AK, Nambisan R, Sharma AK, Pant BD (2013) Design and simulation of MEMS silicon piezoresistive pressure sensor for barometric applications. In: Proceedings of the ARTCom&ARTEE PEIE&itSIP and PCIE. Elsevier, ISBN978-81-910691-8-3, pp 339–345

  • Kuo HI, Ko WH (2009) Smart-Cut™ piezoresistive strain sensors for high temperature applications. In: Proceedings of the IEEE sensors conference, pp 1290–1292

  • Laermer F, Schlip A (1996) Method of anisotropically etching silicon. US Patent 5,501,893

  • Lee KW, Wise KD (1982) SENSIM: a simulation program for solid-state pressure sensors. IEEE Trans Electron Devices 29(1):34–41

    Article  Google Scholar 

  • Lee YT, Seo HD, Kawamura A, Yamada T, Matsumoto Y, Ishida M, Nakamura T (1995) Compensation method of offset and its temperature drift in silicon piezoresistive pressure sensor using double Wheatstone-bridge configuration. In: Proceedings of the 8th international conference on solid-state sensors and actuators and eurosensors IX, Stockholm, pp 570–573

  • Lenci S, Gonzalez P, De Meyer D, Hoof RV, Frederickx D, Witvrouw A (2008) Determination of the piezoresistivity of microcrystalline silicon-germanium and application to a pressure sensor. In: Proceedings of the IEEE 21st international conference on micro electro mechanical systems, pp 427–430

  • Li B, Wu ZH, Lai PT, Sin JKO, Liu BY, Zheng XR (2003) High-temperature thermal sensor based on ultra-thin silicon film for ultra-low-power applications. Solid-State Electron 47(9):1553–1558

    Article  Google Scholar 

  • Li X, Liu Q, Pang S, Xu K, Tang H, Sun C (2012) High-temperature piezoresistive pressure sensor based on implantation of oxygen into silicon wafer. Sens Actuators A 179:277–282

    Article  Google Scholar 

  • Lin L, Yun W (1998) MEMS pressure sensors for aerospace applications. In: Proceedings of the IEEE aerospace conference, pp 429–436

  • Lin L, Yun W, Chu HC, Chiao M (1995) Surface micromachined diaphragm pressure sensors with optimized piezoresistive sensing resistors. In: Proceedings of the IEEE international conference on microelectronics and VLSI, pp 24–27

  • Linlin Z, Chen X, Guangdi S (2006) Analysis for load limitation of square-shaped silicon diaphragms. Solid-State Electron 50:1579–1583

    Article  Google Scholar 

  • Liu X, Lu X, Chuai R, Shi R, Suo C (2009) Polysilicon nanofilm pressure sensor. Sens Actuators A 154:42–45

    Article  Google Scholar 

  • Lou L, Zhang S, Park WT, Tsai JM, Kwong DL, Lee C (2012a) Optimization of NEMS pressure sensors with multilayered diaphragm using silicon nanowires as piezoresistive sensing elements. IEEE J Micromech Microeng 22(5):055012-1–055012-15

  • Lou L, Park WT, Zhang S, Lim LS, Kwong DL, Lee C (2012b) Characterization of silicon nanowire embedded in a MEMS diaphragm structure within large compressive strain range. IEEE Electron Device Lett 59(11):3097–3103

    Article  Google Scholar 

  • Lund E, Finstad TG (2004) Design and construction of a four-point bending based set-up for measurement of piezoresistance in semiconductors. Rev Sci Instrum 75:4960–4966

    Article  Google Scholar 

  • Maier-Schneider D, Maibach J, Obermeier E (1995) A new analytical solution for the load-deflection of square membranes. J Microelectromech Syst 4:238–241

    Article  Google Scholar 

  • Maj C, Napieralski A, Olszacki M, Al-Bahri M, Pons P (2011) A Multi-domain electrostatic actuator design tool based on analytical models. In: Proceedings of the 18th international conference on mixed design of integrated circuits and systems, pp 428–431

  • Malhaire C, Barbier D (2003) Design of a polysilicon-on-insulator pressure sensor with original polysilicon layout for harsh environment. Thin Solid Films 427:362–366

    Article  Google Scholar 

  • Mallon JP Jr, Pourahmadi F, Petersen K, Barth P, Vermeulen T, Bryzek J (1990) Low-pressure sensors employing bossed diaphragms and precision etch-stopping. Sens Actuators A 21:89–95

    Article  Google Scholar 

  • Marshall JF (1977) Fabrication of semiconductor devices utilizing ion implantation. US Patent 4,033,787

  • Matsuda K (2004) Strain-dependent hole masses and piezoresistive properties of silicon. In: Proceedings of the 10th international workshop on computational electronics (IWCE-10), pp 173–174

  • Motorola, Sensor Device Data/Handbook (1998) 4th edn. Motorola Inc., Phoenix

  • Mukhiya R, Bagolini A, Margesin B, Zen M, Kal S (2006) (100) Bar corner compensation for CMOS compatible anisotropic TMAH etching. J Micromech Microeng 16:2458–2462

    Article  Google Scholar 

  • Narayanaswamy M, Daniel RJ, Sumangala K, Jeyasehar CA (2011) Computer aided modelling and diaphragm design approach for high sensitivity silicon-on-insulator pressure sensors. Measurement 44:1924–1936

    Article  Google Scholar 

  • Nemeth NN, Palko JL, Zorman CA, Jadaan O, Mitchell JS (2001) Structural modeling and probabilistic characterization of MEMS pressure sensors membranes. In: Proceedings of the MEMS: mechanics and measurements symposium, pp 46–51

  • Ngo HD, Tham AT, Simon A, Obermeier E (2008) Corner rounding to strengthen silicon pressure sensors using DRIE. In: Proceedings of the IEEE sensors conference, pp 1576–1579

  • Ohmura Y (1993) Role of the valence band density of states in the piezoresistance of p-type semiconductors Si and Ge. J Phys Soc Jpn 62:3615–3620

    Article  Google Scholar 

  • Olszacki M (2009) Modelling and optimization of piezoresistive pressure sensors. Ph.D. dissertation, Université de Toulouse, France

  • Olszacki M, Maj C, Al-Bahri M, Pons P, Napieralski A (2008) A multi-domain piezoresistive pressure sensor design tool based on analytical models. In: Proceedings of the 9th international conference on thermal, mechanical and multiphysics simulation and experiments in micro-electronics and micro-systems (EuroSimE), pp 1–4

  • Pal P, Sato K, Gosalvez MA, Shikida M (2007) Study of rounded concave and sharp edge convex corners undercutting in CMOS compatible anisotropic etchants. J Micromech Microeng 17:2299–2307

    Article  Google Scholar 

  • Panecewicz T, Jachowicz R, Gniazdowski Z, Azgin Z, Kowalski P (1999) The empirical verification of the FEM model of semiconductor pressure sensor. Sens Actuators A 76:260–265

    Article  Google Scholar 

  • Park CS, Kang BS, Lee DW, Choi TY, Choi YS (2007) Fabrication and characterization of a pressure sensor using a pitch-based carbon fibre. Microelectron Eng 84:1316–1319

    Article  Google Scholar 

  • Peng CT, Lin JC, Lin CT, Chiang KN (2005) Performance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technology. Sens Actuators A 119(1):28–37

    Article  Google Scholar 

  • Petersen KE (1982) Silicon as a mechanical material. Proc IEEE 70:420–457

    Article  Google Scholar 

  • Plößl A, Kräuter G (2000) Silicon-on-insulator materials aspects and applications. Solid State Electron 44:775–783

    Article  Google Scholar 

  • Reck K (2008) Piezoresistance in silicon nanowire and sensor applications. M.Sc. thesis, Dept. of Micro and Nanotech., Technical Univ. of Denmark, Denmark

  • Reck K, Richter J, Hansen O, Thomsen EV (2008) Piezoresistive effect in top-down fabricated silicon nanowires. In: Proceedings of the 21st IEEE international conference on micro electro mechanical systems, Tucson, pp 717–720

  • Richter J (2008) Piezoresistance in microsystems. PhD thesis, DTU Nanotech

  • Richter J, Hansen O, Larsen AN, Hansen JL, Eriksen GF, Thomsen EV (2005) Piezoresistance of silicon and strained Si0.9Ge0.1. Sens Actuators A 123–124:388–396

    Article  Google Scholar 

  • Ripka P, Tipek A (2007) Modern sensors handbook. Wiley, Wiltshire

    Book  Google Scholar 

  • Samaun Wise KD, Angell JB (1973) An IC piezoresistive pressure sensor for biomedical instrumentation. IEEE Trans Biomed Eng 20(2):101–109

    Article  Google Scholar 

  • Senturia SD (2001) Microsystem design. Kluwer, Boston

    Google Scholar 

  • Shaby SM, Juliet AV (2012) Design and analysis of MEMS pressure sensor by using ANSYS. In: Proceedings of the 2nd international conference on mechanical, automotive and materials engineering (MAME’12), Bali (Indonesia), pp 132–135

  • Singh R, Ngo LL, Seng HS, Mok FNC (2002) A silicon piezoresistive pressure sensor. In: Proceedings of the IEEE workshop on electronic design, test and applications, Christchurch, pp 181–184

  • Sivakumar K, Dasgupta N, Bhat KN, Natarajan K (2003) Sensitivity enhancement of polysilicon piezo-resistive pressure sensors with phosphorous diffused resistors. J Phys Conf Ser 34:216–221

    Article  Google Scholar 

  • Smith CS (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94:42–49

    Article  Google Scholar 

  • Sugiyama S, Shimaoka K, Tabata O (1991) Surface micromachined micro-diaphragm pressure sensors. In: Proceedings of the transducers, pp 188–191

  • Tabata O, Kawahata K, Sugiyama S, Igarashi I (1989) Mechanical property measurement of thin films using load-deflection of composite rectangular membranes. Sens Actuators A 20:135–141

    Article  Google Scholar 

  • Tabata O, Asahi R, Funabashi H, Shimaoka K, Sugiyama S (1992) Anisotropic etching of silicon in TMAH solutions. Sens Actuators A 34(1):51–57

    Article  Google Scholar 

  • Tanasković D, Djurić Z, Lazić Z (1995) Influence of impurity distribution on thermal coefficients of resistivity and piezoresistivity of diffused layers of silicon. In: Proceedings of the 20th international conference on microelectronics (MIEL’95), vol 2, p 573

  • Tandeske D (1991) Pressure sensors: selection and application. Marcel Dekker, New York

    Google Scholar 

  • Thong JTL, Choi WK, Chong CW (1997) TMAH etching of silicon and the interaction of etching parameters. Sens Actuators A 63(3):243–249

    Article  Google Scholar 

  • Thyagarajan V, Bhat KN (2013) Optimum location for piezoresistors with square diaphragm pressure sensor. In: Proceedings of 6th ISSS national conference on MEMS, smart material, structures and systems, Pune

  • Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Tokoro K, Uchikawa D, Shikida M, Sato K (1998) Anisotropic etching properties of Silicon in KOH and TMAH solutions. In: Proceedings of the international symposium on micromechatronics and human science, pp 65–70

  • Toriyama T, Sugiyama S (2003) Single crystal silicon piezoresistive nanowire bridge. Sens Actuators A 108:244–249

    Article  Google Scholar 

  • Toriyama T, Tanimoto Y, Sugiyama S (2002) Single crystal silicon nano-wire piezoresistors for mechanical sensors. J Microelectromech Syst 11:605–611

    Article  Google Scholar 

  • Tsai HH, Hsieh CC, Fan CW, Chen YC, Wu WT (2009) Design and characterization of temperature-robust piezoresistive micro-pressure sensor with double-wheatstone-bridge structure. In: Proceedings of the symposium on design, test, integration and packaging of MEMS/MOEMS, Rome, pp 363–368

  • Tufte ON, Stelzer EL (1963) Piezoresistive properties of silicon diffused layers. J Appl Phys 34:313–318

    Article  Google Scholar 

  • Tufte ON, Chapman PW, Long D (1962) Silicon diffused element piezoresistive diaphragms. J Appl Phys 33:3322–3327

    Article  Google Scholar 

  • Vandamme LKJ, Oosterhoff S (1986) Annealing of ion-implanted resistors reduces the 1/f noise. J Appl Phys 59:3169–3174

    Article  Google Scholar 

  • Wang Q, Ding J, Wang W (2005) Fabrication and temperature coefficient compensation technology of low cost high temperature pressure sensor. Sens Actuators A 120:468–473

    Article  Google Scholar 

  • Wang JC, Xia XY, Zou HS, Song F, Li X (2013) Piezoresistive pressure sensor with dual-unit configuration for on-chip self-compensation and suppression of temperature drift. In: Proceedings of the 17th international conference on solid-state sensors, actuators and microsystems, pp 1763–1766

  • Wei J, Sarro PM, Due TC (2008) A piezoresistive sensor for pressure monitoring at inkjet nozzle. In: Proceedings of the IEEE sensors, pp 2093–2096

  • Werner M, Gluche P, Adamschik M, Kohn E, Fecht HJ (1998) Review on diamond based piezoresistive sensors. In: Proceedings of the IEEE international symposium on industrial electronics, vol 1, pp 147–152

  • Wu CH, Zorman CA, Mehregany M (2006) Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications. IEEE Sens J 6:316–324

    Article  Google Scholar 

  • Wur DR, Davidson JL, Kang WP, Kinser DL (1995) Polycrystalline diamond pressure sensor. J Microelectromech Syst 4(1):34–41

    Article  Google Scholar 

  • Xiansong F, Suying Y, Shuzhi H, Wei Z, Yiqiang Z, Shengcai Z, Weixin Z (2004) Simulation and test of a novel SOI high temperature pressure sensor. In: Proceedings of the 7th international conference on solid-state and integrated circuits technology, pp 1824–1827

  • Xiaowei L, Xin L, Wei W, Xilian W, Wei C, Zhenmao L (1998) Computer simulation of polysilicon piezoresistive pressure sensors. In: Proceedings of the 5th international conference on solid state and integrated circuit technology, pp 891–894

  • Xu J, Pickrell G, Wang X, Peng W, Cooper K, Wang A (2005) A novel temperature-insensitive optical fiber pressure sensor for harsh environments. IEEE Photonics Technol Lett 17(4):870–872

    Article  Google Scholar 

  • Yamamoto A, Tsutsumoto T (2004) Piezoresistive effect of CVD polycrystalline diamond films. Diam Relat Mater 13:863–866

    Article  Google Scholar 

  • Yan G, Chan PCH, Hsing IM, Sharma RK, Sin JKO, Wang Y (2001) An improved Si-etching solution without attacking exposed aluminum. Sens Actuators A 89:135–141

    Article  Google Scholar 

  • Yang LJ, Lai CC, Dai CL, Chang PZ (2005) A piezoresistive micro pressure sensor fabricated by commercial DPDM CMOS process. Tamkang J Sci Eng 8:67–73

    Google Scholar 

  • Yasukawa A, Shimazoe M, Matsuoka Y (1989) Simulation of circular silicon pressure sensors with a center boss for very low pressure measurement. IEEE Trans Electron Devices 36:1295–1302

    Article  Google Scholar 

  • Yazdi N, Ayazi F, Najafi K (1998) Micromachined inertial sensors. Proc IEEE 86(8):1640–1659

    Article  Google Scholar 

  • Yuan M, Liu P, She B, Tang Y, Xu Y (2010) Research of MEMS piezoresistive pressure sensor. In: Proceedings of the international conference on future information technology and measurement engineering, pp 536–539

  • Yulong Z, Libo Z, Zhuangde J (2003) A novel high temperature pressure sensor on the basis of SOI layers. Sens Actuators A 108:108–111

    Article  Google Scholar 

  • Zhang Y, Liu B, Liu L, Tan Z, Zhang Z, Lin H, Ren T (2006) Design, fabrication and characterization of novel piezoresistive pressure microsensor for TPMS. In: Proceedings of the IEEE solid-state circuits conference, pp 443–446

  • Zhang YH, Yang C, Zhang ZH, Lin HW, Liu LT, Ren TL (2007) A novel pressure microsensor with 30-μm-thick diaphragm and meander-shaped piezoresistors partially distributed on high-stress bulk silicon region. IEEE Sens J 7(12):1742–1748

    Article  Google Scholar 

  • Zhang ZH, Zhang YH, Liu LT, Ren TL (2008) A novel MEMS pressure sensor with MOSFET on chip. In: Proceedings of the IEEE sensors, pp 1564–1567

  • Zhao LB, Zhao YL, Jiang ZD (2006) Design and fabrication of a piezoresistive pressure sensor for ultra high temperature environment. J Phys Conf Ser 48:178–183

    Article  Google Scholar 

  • Zhao Y, Fang X, Jiang Z, Zhao L (2010) An ultra-high pressure sensor based on SOI piezoresistive material. J Mech Sci Technol 24(8):1655–1660

    Article  Google Scholar 

  • Zhu Y, Wang A (2005) Miniature fiber-optic pressure sensor. IEEE Photonics Technol Lett 17:447–449

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the generous support of the Director, CSIR-CEERI, Pilani. The authors would also like to thank all the scientific and technical staff of MEMS and Microsensors Group at CSIR-CEERI, Pilani. The financial support by Council of Scientific and Industrial Research (CSIR) through PSC-201: MicroSenSys project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Santosh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.S., Pant, B.D. Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst Technol 20, 1213–1247 (2014). https://doi.org/10.1007/s00542-014-2215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2215-7

Keywords

Navigation