Skip to main content
Log in

Design and performance evaluation of a biomimetic microrobot for the father–son underwater intervention robotic system

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Underwater intervention is a favorite and difficult task for AUVs. To realize the underwater manipulation for the small size spherical underwater robot SUR-II, a father–son underwater intervention robotic system (FUIRS) is proposed in our group. The FUIRS employs a novel biomimetic microrobot to realize an underwater manipulation task. This paper describes the biomimetic microrobot which is inspired by an octopus. The son robot can realize basic underwater motion, i.e. grasping motion, object detection and swimming motion. To enhance the payload, a novel buoyancy force adjustment method was proposed which can provides 11.8 mN additional buoyancy force to overcome the weight of the object in water. Finally, three underwater manipulation experiments are carried out to verify the performance of the son robot. One is carried by swimming motion and buoyancy adjustment; the other two are only carried by buoyancy adjustment. And the experimental results show that the son robot can realize the underwater manipulation of different shape and size objects successfully. The swimming motion can reduce the time cost of underwater manipulation remarkably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abdelnour K, Stinchcombe A, Porfiri M, Zhang J, Childress S (2012) Wireless powering of ionic polymer metal composites toward hovering microswimmers. IEEE/ASME Trans Mechatron 17:924–935

    Article  Google Scholar 

  • Antonelli G, Chiaverini S, Sarkar N (2001) External force control for underwater vehicle-manipulator systems. IEEE Trans Robot Autom 17:931–938

    Article  Google Scholar 

  • Bonomo C, Fortuna L, Giannone P, Graziani S, Strazzeri S (2007) A nonlinear model for ionic polymer metal composites as actuators. J Smart Mater Struct 16:1–12

    Article  Google Scholar 

  • Chang Y, Kim W (2013) Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs. IEEE/ASME Trans Mechatron 18:547–555

    Article  Google Scholar 

  • De Novi G, Melehiorri C, Garcia JC, Saoz PJ, Rldao P, Oliver G (2009) A new approach for a reconfigurable autonomous underwater vehicle for intervention systems conference, 2009 3rd Annual IEEE, Vancouver, pp 23–26, 23–26 March 2009

  • Duhamel P-EJ, Pérez-Arancibia NO, Barrows GL, Wood RJ (2013) Biologically inspired optical-flow sensing for altitude control of flapping-wing microrobots. IEEE/ASME Trans Mechatron 18:556–568

    Article  Google Scholar 

  • Farivarnejad H, Ali S, Moosavian A (2014) Multiple impedance control for object manipulation by a dual arm underwater vehicle–manipulator system. Ocean Eng 89:82–98

    Article  Google Scholar 

  • Gao B, Guo S, Ye X (2011) Motion-control analysis of ICPF-actuated underwater biomimetic microrobots. Int J Mechatron Autom 1:79–89

    Article  Google Scholar 

  • Ghanbari A, Mottaghi E, Qaredaghi E (2013) A new model of bio-inspired bat robot. In: Proceeding of the 2013 RSI/ISM international conference on robotics and mechatronics, Tehran, pp 403–406, 13–15 Feb 2013

  • Guo S, Shi L, Xiao N, Asaka K (2012) A biomimetic underwater microrobot with multifunctional locomotion. Robot Autom Syst 60:1472–1483

    Article  Google Scholar 

  • http://www.foxnews.com/entertainment/2010/10/26/paul-octopus-world-cup-oracle-dies/

  • http://www.irs.uji.es/rauvi/index.html

  • Hubbard JJ, Fleming M, Palmre V, Pugal D, Kim KJ, Leang KK (2014) Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE J Ocean Eng 39:540–551

    Article  Google Scholar 

  • Hu T, Low KH, Shen L, Xu X (2014) Effective phase tracking for bioinspired undulations of robotic fish models: a learning control approach. IEEE/ASME Trans Mechatron 19:191–200

    Article  Google Scholar 

  • Jain RK, Parkar US, Majumdar S (2009) Micro gripper for micromanipulation using IPMCs (ionic polymer metal composites). J Sci Ind Res 68:23–28

    Google Scholar 

  • Jain RK, Majumder S, Dutta A (2013) SCARA based peg-in-hole assembly using compliant IPMC micro gripper. Robot Auton Syst 61:297–311

    Article  Google Scholar 

  • Yu J, Su Z, Wang M, Tan M, Zhang J (2012) Control of yaw and pitch maneuvers of a multilink dolphin robot. IEEE Trans Robot 28:318–329

    Article  Google Scholar 

  • Kazakidi A, Vavourakis V, Pateromichelakis N, Ekaterinaris JA, Tsakiris DP (2012) Hydrodynamic analysis of octopus-like robotic arms 2012 IEEE international conference on robotics and automation, St Paul, USA, pp 5295–5300, 14–18 May 2012

  • Kim TW, Yuh J (2004) Development of a real-time control architecture for a semi-autonomous underwater vehicle for intervention missions. Control Eng Pract 12:1521–1530

    Article  Google Scholar 

  • Kim S, Asbeck AT, Cutkosky MR, Provancher WR (2005) SpinybotII: climbing hard walls with compliant microspines, advanced robotics, 2005. ICAR’05. In: Proceedings 12th international conference on, Seattle, pp 601–606, 18–20 July 2005

  • Lee J-W, Vinh KN, Park S-Y, Yoo Y-T (2006) Electrolytic stability of various inner solutions in an ionic polymer metal composite. J Korean Phys Soc 48:1594–1600

    Google Scholar 

  • Liljebäck P, Pettersen KY, Stavdahl Ø, Gravdahl JT (2011) Controllability and stability analysis of planar snake robot locomotion. IEEE Trans Autom Control 56:1365–1380

    Article  MathSciNet  MATH  Google Scholar 

  • Lin X, Guo S, Yue C, Du J (2013) 3D modelling of a vectored water jet-based multi-propeller propulsion system for a spherical underwater robot. Int J Adv Rob Syst. doi:10.5772/51537

    Google Scholar 

  • Marani G, Choi SK, Yuh J (2009) Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng 36:15–23

    Article  Google Scholar 

  • Sfakiotakis M, Kazakidi A, Pateromichelakis N, Tsakiris DP (2013) Octopus-inspired eight-arm robotic swimming by szculling movements 2013 IEEE international conference on robotics and automation, Karlsruhe, German, pp 5155–5161, 6–10 May 2013

  • Sarkar N, Podder TK (2001) Coordinated motion planning and control of autonomous underwater vehicle-manipulator systems subject to drag optimization. IEEE J Ocean Eng 26:228–239

    Article  Google Scholar 

  • Shi L, Guo S, Kudo H, Asaka K (2012) Development of a venus flytrap-inspired robotic flytrap. In: Proceeding of the 2012 IEEE international conference on robotics and biomimetics, Guangzhou, pp 551–556, 11–14 December 2012

  • Shi L, Guo S, Mao S, Li M, Asaka K (2013a) Development of a lobster-inspired underwater microrobot. Int J Adv Rob Syst. doi:10.5772/54868

    Google Scholar 

  • Shi L, Guo S, Pan S, He Y, Guo P (2013b) A multifunctional underwater microrobot for mother–son underwater robot system. In: Proceeding of the IEEE international conference on robotics and biomimetics, Shenzhen, pp 1007–1012, 12–14 December 2013

  • Wooden D, Malchano M, Blankespoor K, Howard A, Rizzi AA, Raibert M (2010) Autonomous navigation for bigdog 2010 IEEE international conference on robotics and automation, Anchorage, Alaska, pp 4736–4741, May 3–8, 2010

  • Xu Y, Mohseni K (2014) Bioinspired hydrodynamic force feedforward for autonomous underwater vehicle control. IEEE/ASME Trans Mechatron 19:1127–1137

    Article  Google Scholar 

  • Yue C, Guo S, Lin X, Du J (2012) Analysis and improvement of the water-jet propulsion system of a spherical underwater robot. In: Proceedings of 2012 IEEE international conference on mechatronics and automation, Chengdu, pp 2208–2213, 5–8 August 2012

  • Yue C, Guo S, Shi L (2013) Hydrodynamic analysis of a spherical underwater robot: SUR-II. Int J Adv Rob Syst. doi:10.5772/56524

    Google Scholar 

  • Yue C, Guo S, Li Y, Li M (2014) Bio-inspired robot launching system for a mother–son underwater manipulation task. In: Proceedings of 2014 IEEE international conference on mechatronics and automation, Tianjin, pp 174–179, 3–6 August 2014

Download references

Acknowledgments

This research project is partly supported by National Natural Science Foundation of China (61375094), and Key Research Program of the Natural Science Foundation of Tianjin (13JCZDJC26200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfeng Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, C., Guo, S. & Shi, L. Design and performance evaluation of a biomimetic microrobot for the father–son underwater intervention robotic system. Microsyst Technol 22, 831–840 (2016). https://doi.org/10.1007/s00542-015-2471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2471-1

Keywords

Navigation