Skip to main content
Log in

Design enhancement of a chevron electrothermally actuated microgripper for improved gripping performance

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper design modifications are proposed in microgripper design using two in-plane chevron electrothermal actuators. The design modifications are, converting free–free gripping arm into a clamped-free gripping arm and inclusion of the heat sinks in the shuttle. The modified design provides reduced temperature at the gripping jaws and higher gripping force. The proposed microgripper is modelled analytically and numerically using MEMS CAD tool CoventorWare. The performance of the microgripper such as displacement, force and temperature for the voltage range of 0–1.2 V is evaluated through numerical and analytical simulation. The results demonstrate the feasibility of fabrication. Further the gripper is made of polysilicon which allows operating the gripper at lower voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Atashzaban E, Nasiri M (2013) A novel MEMS based linear actuator for mirror shape correction application. J Opt 42(3):247–256

    Article  Google Scholar 

  • Boudaoud M, Haddab Y, Gorrec YL (2013) Modeling and optimal force control of a nonlinear electrostatic microgripper. IEEE ASME Trans Mechatron 18(3):1130–1139

    Article  Google Scholar 

  • Chang H, Zhao H, Ye F, Yuan G, Xie J, Kraft M, Yuan W (2013) A rotary comb-actuated microgripper with a large displacement range. Microsyst Technol 20(1):119–126

    Article  Google Scholar 

  • Iamoni S, Soma A (2014) Design of an electro-thermally actuated cell microgripper. Microsyst Technol 20:869–877

    Article  Google Scholar 

  • Jericho SK, Jericho MH, Hubbard T, Kujath M (2004) Microtweezers for the manipulation of bacteria and small particles. Rev Sci Instrum 75:1280

    Article  Google Scholar 

  • Khan F, Bazaz SA, Sohail M (2010) Design, implementation and testing of electrostatic SOI MUMPs based microgripper. Microsyst Technol 16:1957–1965

    Article  Google Scholar 

  • Kwan AMH, Song S, Lu X, The YK, Teh YF, Chong EWC, Gao Y, Hau W, Zeng F, Wong M, Huang C, Taniyama A, Makino Y, Nishino S, Tsuchiya T, Tabata O (2012) Improved Design for an Electrothermal In-Plane Microactuator. J Microelectromech S 21(3):586–593

    Article  Google Scholar 

  • Lai Y, McDonald J, Kujath M, Hubbard T (2004) Force, deflection and power measurements of toggled microthermal actuators. J Micromech Microeng 14:49–56

    Article  Google Scholar 

  • Leondes CT (2006) MEMS/NEMS Handbook Techniques and Applications, Springer

  • Luo JK, Flewitt AJ, Spearing SH, Fleck NA, Milne WI (2005) Comparsion of microtweezers based on three lateral thermal actuator configurations. J Micromech Microeng 15:1294–1302

    Article  Google Scholar 

  • Nonaka K, Sakai K, Baillieul J (2004) Open loop oscillatory control for electromagnetic actuated microgrippers. Proc SICE Ann Conf 3:2285–2290

    Google Scholar 

  • Que L, Park JS, Gianchandani YB (1999) Bent-beam electrothermal actuators for high force application. In: Proceedings of Twelfth IEEE International conference on Micro electro mechanical systems, pp 31–36

  • Que L, Park JS, Gianchandani YB (2001) Bent-beam electrothermal actuators-Part I: single beam and cascaded devices. J Microelectromech S 10(2):247–254

    Article  Google Scholar 

  • Shi X, Chen W, Zhang J, Chen W (2013) Design, modeling, and simulation of a 2-d of microgripper for grasping and rotating of optical fibers. In: Proceedings of IEEE/ASME International conference on advanced intelligent mechatronics (AIM) Wollongong Australia, pp 1597–1602

  • Sinclair MJ (2000) A high force low area MEMS Thermal Actuaor. Sev Intersoc Conf Therm Thermomech Phenom Electron Sys ITHERM 1:127–132

    Google Scholar 

  • Steiner H, Stifter M, Hortschitz W, Keplinger F (2015) Planar magnetostrictive micromechanical actuator. IEEE T Magn 51(1):1–4

    Article  Google Scholar 

  • Sun X, Chen W, Fatikow S, Tian Y, Zhou R, Zhang J, Mikczinski M (2014) A novel piezo-driven microgripper with a large jaw displacement. Microsyst Technol, pp 1–12

  • Varona Jorge V, Tecpoyotl-Torres M, Hamoui AA (2009) Design of MEMS vertical–horizontal chevron thermal actuators. Sensor Actuat A Phys 153(1):127–130

    Article  Google Scholar 

  • Volland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectron Eng 61–62:1015–1023

    Article  Google Scholar 

  • Wang DH, Yang Q, Dong HM (2013) A Monolithic Compliant Piezoelectric-Driven Microgripper: design, Modeling, and Testing. IEEE ASME Trans Mechatron 18(1):138–147

    Article  Google Scholar 

  • Wang Z, Shen X, Chen X (2015) Design, modeling, and characterization of a MEMS electrothermal microgripper. Microsyst Technol, pp 1–8

  • Zhang R, Chu JK, Chen ZP (2011) A novel SU-8 electrothermal microgripper based on type synthesis of kinematic chain method. In: Proceedings of 16th international conference (Transducers) of Solid-state sensors, actuators and microsystems, pp 466–469

  • Zhang R, Chu J, Wang H, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst Technol 19:89–97

    Article  Google Scholar 

  • Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J Micromech Microeng 16(2):242–253

    Article  Google Scholar 

  • Zubir MNM, Shirinzadeh B, Tian Y (2009) A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mech Mach Theory 44:2248–2264

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Uma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivhare, P., Uma, G. & Umapathy, M. Design enhancement of a chevron electrothermally actuated microgripper for improved gripping performance. Microsyst Technol 22, 2623–2631 (2016). https://doi.org/10.1007/s00542-015-2561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2561-0

Keywords

Navigation