Skip to main content
Log in

Research development of silicon MEMS gyroscopes: a review

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Micro-electromechenical Systems (MEMS) gyroscope is widely used in many occasions to measure the angular speed of the moving objects and attracts the attentions of many research institutions all over the world. This kind of sensor possesses the advantages of high degree of integration, low cost and consumption of power. This paper first introduces the research development of silicon MEMS gyroscope since eighties of last century; the researches of many institutions such as Draper Laboratory and UC Berkeley are mentioned and different design principles, control methods and structures are presented. This review then presents the key theories and technologies of the sensor and some research results of them. In additional, some recent new applications of MEMS gyroscope are also been introduced in this paper such as wearable motion capture system and micro inertial measurement unit. Finally, according to the review, some views of silicon MEMS gyroscope and its future prospects are put forwarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Athavale M, Yang H, Przekwas A Coupled fluid-thermo-structures simulation methodology for MEMS applications. In: Solid state sensors and actuators, 1997. TRANSDUCERS’97 Chicago, 1997 international conference on, 1997. IEEE, pp 1043–1046

  • Bernstein J, Cho S, King A, Kourepenis A, Maciel P, Weinberg M A micromachined comb-drive tuning fork rate gyroscope. In: Micro electro mechanical systems, 1993, MEMS’93, proceedings an investigation of micro structures, sensors, actuators, machines and systems. IEEE, 1993. IEEE, pp 143–148

  • Brigante CMN, Abbate N, Basile A, Faulisi AC, Sessa S (2011) Towards miniaturization of a MEMS-based wearable motion capture system. IEEE Trans Ind Electron 58:3234–3241

    Article  Google Scholar 

  • Brown AK (2005) GPS/INS uses low-cost MEMS IMU. IEEE Aerosp Electron Syst Mag 20:3–10

    Article  Google Scholar 

  • Cao H, Li H, Sheng X, Wang S, Yang B, Huang L (2013) A novel temperature compensation method for a MEMS gyroscope oriented on a periphery circuit. Int J Adv Rob Syst 10:1–10

    Google Scholar 

  • Chai G, Low K (1993) On the natural frequencies of beams carrying a concentrated mass. J Sound Vib 160:161–166

    Article  Google Scholar 

  • Chang H, Gong X, Wang S, Zhou P, Yuan W (2015) On improving the performance of a tri-axis vortex convective gyroscope through suspended silicon thermistors. IEEE Sens J 15:946–955

    Article  Google Scholar 

  • Cheng P, Oelmann B (2010) Joint-angle measurement using accelerometers and gyroscopes-A survey. IEEE Trans Instr Meas 59:404–414

    Article  Google Scholar 

  • Chiu S-R, Teng L-T, Chao J-W, Sue C-Y, Lin C-H, Chen H-R, Su Y-K (2014) An integrated thermal compensation system for MEMS inertial sensors. Sensors 14:4290–4311

    Article  Google Scholar 

  • Clark WA, Howe RT, Horowitz R (1996) Surface micromachined z-axis vibratory rate gyroscope. In Tech. Dig. Solid-state sensor and actuator workshop. pp 283–287

  • Davis BS (1998) Using low-cost MEMS accelerometers and gyroscopes as strapdown IMUs on rolling projectiles. In: Position location and navigation symposium, IEEE 1998. IEEE, pp 594–601

  • Droogendijk H, Brookhuis RA, de Boer MJ, Sanders RGP, Krijnen GJM (2014) Towards a biomimetic gyroscope inspired by the fly’s haltere using microelectromechanical systems technology. J R Soc Interf R Soc 11:20140573

    Article  Google Scholar 

  • Greiff P (1988) A vibratory micromechanical gyroscope. AIAA guidance and control conference. Minneapolis, MN, USA, pp 1033–1040

  • Greiff P, Boxenhorn B (1995) Micromechanical gyroscopic transducer with improved drive and sense capabilities. Google patents, US patent, No. 5408877

  • Greiff P, Boxenhorn B, King T, Niles L (1991) Silicon monolithic micromechanical gyroscope. In: Solid-state sensors and actuators. Digest of technical papers, TRANSDUCERS’91, 1991 international conference on IEEE, pp 966–968

  • Greiff P, Antkowiak B, Campbell J, Petrovich A (1996) Vibrating wheel micromechanical gyro. In: Position location and navigation symposium. IEEE 1996, pp 31–37

  • Jimenez AR, Seco F, Prieto C, Guevara J, IEEE (2009) A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU. Wisp 2009: 6th IEEE international symposium on intelligent signal processing, proceedings

  • Hassanpour P, Cleghorn W, Esmailzadeh E, Mills J (2007a) Vibration analysis of axially loaded Euler-Bernoulli beams with guided mass. In: ASME 2007 international design engineering technical conferences and computers and information in engineering conference. American society of mechanical engineers, pp 2133–2139

  • Hassanpour P, Cleghorn W, Mills J, Esmailzadeh E (2007b) Exact solution of the oscillatory behavior under axial force of a beam with a concentrated mass within its interval. J Vib Control 13:1723–1739

    Article  MathSciNet  MATH  Google Scholar 

  • Hassanpour P, Esmailzadeh E, Cleghorn W, Mills J (2010a) Generalized orthogonality condition for beams with intermediate lumped masses subjected to axial force. J Vib Control. doi:10.1177/1077546309106526

    MathSciNet  Google Scholar 

  • Hassanpour PA, Esmailzadeh E, Cleghorn WL, Mills JK (2010b) Nonlinear vibration of micromachined asymmetric resonators. J Sound Vib 329:2547–2564

    Article  Google Scholar 

  • Hoeflinger F, Mueller J, Zhang R, Reindl LM, Burgard W (2013) A wireless micro inertial measurement unit (IMU). IEEE Trans Instr Meas 62:2583–2595

    Article  Google Scholar 

  • Jakovljevic M, Mrcarica Z, Fotiu PA, Detter H, Litovski V (2000) Transient electro-thermal simulation of microsystems with space-continuous thermal models in an analogue behavioural simulator. Microelectron Reliab 40:507–516

    Article  Google Scholar 

  • Juneau T, Pisano A, Smith JH (1997) Dual axis operation of a micromachined rate gyroscope. In: Solid state sensors and actuators, 1997. TRANSDUCERS’97 Chicago. International conference on, 1997. IEEE, pp 883–886

  • Khazaai JJ, Haris M, Qu H, Slicker J (2010) Displacment amplification and latching mechanism using V-shape actuators in design of electro-thermal MEMS switches. In: Sensors, 2010. IEEE, pp 1454–1459

  • Leland RP (2005) Mechanical-thermal noise in MEMS gyroscopes. IEEE Sens J 5:493–500

    Article  Google Scholar 

  • Liu G, Wang A, Jiang T, Jiao J, Jang J-B (2008) Effects of environmental temperature on the performance of a micromachined gyroscope. Microsyst Technol 14:199–204

    Article  Google Scholar 

  • Liu K et al (2009) The development of micro-gyroscope technology. J Micromech Microeng 19:113001

    Article  Google Scholar 

  • Low K (1994) An equivalent-center method for quick frequency analysis of beams carrying a concentrated mass. Comput Struct 50:409–419

    Article  Google Scholar 

  • Low KH, Lim TM, Chai GB (1993) Experimental and analytical investigations of vibration frequencies for centre-loaded beams. Comput Struct 48:1157–1162

    Article  Google Scholar 

  • Madni AM, Wan LA, Hammons SA (1996) microelectromechanical quartz rotational rate sensor for inertial applications. In: Aerospace applications conference, 1996. Proceedings, 1996 IEEE, pp 315–332

  • Madni AM, Costlow LE, Knowles SJ (2003) Common design techniques for BEI GyroChip quartz rate sensors for both automotive and aerospace/defense markets. IEEE Sens J 3:569–578

    Article  Google Scholar 

  • Maluf N (2002) An introduction to microelectromechanical systems engineering. Measur Sci Technol 13:229

    Article  Google Scholar 

  • Miller DC, Boyce BL, Dugger MT, Buchheit TE, Gall K (2007) Characteristics of a commercially available silicon-on-insulator MEMS material. Sens Actuators A Phys 138:130–144

    Article  Google Scholar 

  • Mochida Y, Tamura M, Ohwada K (2000) A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes. Sens Actuators A-Phys 80:170–178. doi:10.1016/s0924-4247(99)00263-0

    Article  Google Scholar 

  • Noureldin A, Karamat TB, Eberts MD, El-Shafie A (2009) Performance enhancement of MEMS-based INS/GPS integration for low-cost navigation applications. IEEE Trans Veh Technol 58:1077–1096. doi:10.1109/tvt.2008.926076

    Article  Google Scholar 

  • Özkaya E (2002) Non-linear transverse vibrations of a simply supported beam carrying concentrated masses. J Sound Vib 257:413–424

    Article  Google Scholar 

  • Ozkaya E, Tekin A (2007) Non linear vibrations of stepped beam system under different boundary conditions. Struct Eng Mech 27:333–346

    Article  Google Scholar 

  • Özkaya E, Pakdemirli M, Öz H (1997) Non-linear vibrations of a beam-mass system under different boundary conditions. J Sound Vib 199:679–696

    Article  MATH  Google Scholar 

  • Painter CC, Shkel AM (2003) Structural and thermal modeling of a z-axis rate integrating gyroscope. J Micromech Microeng 13:229

    Article  Google Scholar 

  • Pakdemirli M, Boyacı H (2003) Non-linear vibrations of a simple–simple beam with a non-ideal support in between. J Sound Vib 268:331–341

    Article  MATH  Google Scholar 

  • Palaniapan M, Howe RT, Yasaitis J (2002) Integrated surface-micromachined z-axis frame microgyroscope. In: Electron devices meeting, 2002. IEDM’02. international, IEEE, pp 203–206

  • Sadat A, Qu HW, Yu CZ, Yuan JS, Xie HK (2005) Low-power CMOS wireless MEMS motion sensor for physiological activity monitoring. IEEE Trans Circuits Syst I-Regul Pap 52:2539–2551

    Article  Google Scholar 

  • Schaechter JD, Stokes C, Connell BD, Perdue K, Bonmassar G (2006) Finger motion sensors for fMRI motor studies. Neuroimage 31:1549–1559

    Article  Google Scholar 

  • Schofield AR, Trusov AA, Shkel AM (2008) Effects of operational frequency scaling in multi-degree of freedom MEMS gyroscopes. IEEE Sens J 8:1672–1680

    Article  Google Scholar 

  • Seshia AA, Howe RT, Montague S (2002) An integrated microelectromechanical resonant output gyroscope. In: Micro electro mechanical systems. The fifteenth IEEE international conference on, 2002. IEEE, pp 722–726

  • Sharma A, Zaman MF, Ayazi F (2007) A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes solid-state circuits. IEEE J Solid-State Circuits 42:1790–1802

    Article  Google Scholar 

  • Shcheglov K, Evans C, Gutierrez R, Tang TK (2000) Temperature dependent characteristics of the JPL silicon MEMS gyroscope. In: Aerospace conference proceedings, 2000 IEEE, pp 403–411

  • Shiqin Zhou (2001) The development of new inertial technology. Winged Missiles J 6:70–77

    Google Scholar 

  • Spearing S (2000) Materials issues in microelectromechanical systems (MEMS). Acta Mater 48:179–196

    Article  Google Scholar 

  • Trusov A, Schofield A, Shkel A (2009) Gyroscope architecture with structurally forced anti-phase drive-mode and linearly coupled anti-phase sense-mode. In: Solid-state sensors, actuators and microsystems conference, 2009. TRANSDUCERS 2009. International, IEEE, pp 660–663

  • Trusov AA, Schofield AR, Shkel AM (2011) Micromachined rate gyroscope architecture with ultra-high quality factor and improved mode ordering. Sens Actuators, A 165:26–34

    Article  Google Scholar 

  • Tsai CW, Chen KH, Shen CK, Tsai JC (2012) A MEMS doubly decoupled gyroscope with wide driving frequency range. IEEE Trans Industr Electron 59:4921–4929

    Article  Google Scholar 

  • Wang R, Cheng P, Xie F, Young D, Hao Z (2011) A multiple-beam tuning-fork gyroscope with high quality factors. Sens Actuators, A 166:22–33

    Article  Google Scholar 

  • Wang W, Zhang T, Fan D, Xing C (2014) Study on frequency stability of a linear-vibration MEMS gyroscope. Microsyst Technol 20:2147–2155

    Article  Google Scholar 

  • Witvrouw A, Tilmans H, De Wolf I (2004) Materials issues in the processing, the operation and the reliability of MEMS. Microelectron Eng 76:245–257

    Article  Google Scholar 

  • Xie H, Fedder GK (2003) Integrated microelectromechanical gyroscopes. J Aerosp Eng 16:65–75

    Article  Google Scholar 

  • Zaman M, Sharma A, Ayazi F (2006) High performance matched-mode tuning fork gyroscope. In: Micro electro mechanical systems, 2006. MEMS 2006 Istanbul. 19th IEEE international conference on. IEEE, pp 66–69

  • Zaman MF, Sharma A, Hao Z, Ayazi F (2008) A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour allan deviation bias instability. J Microelectromech Syst 17:1526–1536

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the International cooperation project with Grant number 2014DFA31230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Fucheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhanshe, G., Fucheng, C., Boyu, L. et al. Research development of silicon MEMS gyroscopes: a review. Microsyst Technol 21, 2053–2066 (2015). https://doi.org/10.1007/s00542-015-2645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2645-x

Keywords

Navigation