Skip to main content
Log in

Design, fabrication and characterization of low cost printed circuit board based EWOD device for digital microfluidics applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Digital microfluidics (DMF) is an emerging liquid-handling technology that enables individual control over droplets on array of electrodes. In this paper a low cost approach for development and characterization of open configured electro wetting on dielectric (EWOD) based digital microfluidic device is presented. The array of electrodes pattern with 155 μm gap is realized on copper plated printed circuit board (PCB). Biocompatible polydimethylsiloxane (PDMS) is used as dielectric as well as hydrophobic layer which is a competitive substitute of expensive materials like Teflon-AF and parylene-C. The device is tested by the in-house developed low cost droplet handling and characterization system. A contact angle is measured by curve fitting; the volume of a droplet is calculated using a novel approach based on mathematical modeling of droplet as a spherical cap. The droplet transporting and merging are successfully performed on a fabricated device and velocities for forward and reverse direction on square and interdigitated pattern are analyzed. The device is also successfully demonstrated for the mixing applications using direct statistical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdelgawad M, Wheeler AR (2007) Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid 4:349–355. doi:10.1007/s10404-007-0190-3

    Article  Google Scholar 

  • Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21:920–925. doi:10.1002/adma.200802244

    Article  Google Scholar 

  • Au AK, Lai H, Utela BR, Folch A (2011) Microvalves and micropumps for BioMEMS. Micromachines 2:179–220. doi:10.3390/mi2020179

    Article  Google Scholar 

  • Baird ES, Mohseni K (2007) A unified velocity model for digital microfluidics. Nanoscale Microscale Thermophys Eng 11:109–120. doi:10.1080/15567260701337514

    Article  Google Scholar 

  • Berthier J (2013) Micro-drops and digital dicrofluidics, 2nd edn. Elsevier, London, pp 232–242

    Google Scholar 

  • Caputo D, de Cesare G, Lo Vecchio N et al (2014) Polydimethylsiloxane material as hydrophobic and insulating layer in electrowetting-on-dielectric systems. Microelectron J 45:1684–1690. doi:10.1016/j.mejo.2014.05.016

    Article  Google Scholar 

  • Cho SK, Moon H, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80. doi:10.1109/JMEMS.2002.807467

    Article  Google Scholar 

  • Choi K, Ng AHC, Fobel R, Wheeler AR (2012) Digital Microfluidics. Annu Rev Anal Chem 5:413–440

    Article  Google Scholar 

  • Fair RB, Khlystov A, Srinivasan V et al (2004) Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform. In: Smith LA, Sobek D (eds) Proceedings of SPIE, pp 113–124

  • Gong J, Kim CJ (2008) Direct-referencing two-dimensional-array digital microfluidics using multilayer printed circuit board. J Microelectromech Syst 17:257–264. doi:10.1109/JMEMS.2007.912698

    Article  Google Scholar 

  • Lee J, Moon H, Fowler J et al (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors Actuators, A Phys 95:259–268

    Article  Google Scholar 

  • Lippmann G (1875) Relation entre les phénomènes électriques et capillaires. Ann Chim Phys 5:494–549

    Google Scholar 

  • Liu H, Dharmatilleke S, Maurya DK, Tay AAO (2009) Dielectric materials for electrowetting-on-dielectric actuation. Microsyst Technol 16:449–460. doi:10.1007/s00542-009-0933-z

    Article  Google Scholar 

  • Mata A, Fleischman AJ, Roy S (2005) Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 7:281–293. doi:10.1007/s10544-005-6070-2

    Article  Google Scholar 

  • Mugele F, Baret J-C (2005) Electrowetting: from basics to applications. J Phys: Condens Matter 17:R705–R774. doi:10.1088/0953-8984/17/28/R01

    Google Scholar 

  • Nelson WC, Kim C-J (2012) Droplet actuation by electrowetting-on-dielectric (EWOD): a review. J Adhes Sci Technol ahead-of-p: 1–25. doi: 10.1163/156856111X599562

  • Nguyen N-T (2011) Micromixers: fundamentals, design and fabrication. William Andrew, Norwich

    Google Scholar 

  • Paik P, Pamula VK, Pollack MG, Fair RB (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3:28–33. doi:10.1039/b210825a

    Article  Google Scholar 

  • Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101. doi:10.1039/b110474h

    Article  Google Scholar 

  • Quinn A, Sedev R, Ralston J (2005) Contact angle saturation in electrowetting. J Phys Chem B 109:6268–6275. doi:10.1021/jp040478f

    Article  Google Scholar 

  • Saeki F, Baum J, Moon H et al (2001) Electrowetting on dielectrics (EWOD): reducing voltage requirements for microfluidics. Polym Mater Sci Eng 85:12–13

    Google Scholar 

  • Song JH, Evans R, Lin YY et al (2009) A scaling model for electrowetting-on-dielectric microfluidic actuators. Microfluid Nanofluidics 7:75–89. doi:10.1007/s10404-008-0360-y

    Article  Google Scholar 

  • Srinivasan V, Pamula V, Pollack M, Fair R (2003a) A digital microfluidic biosensor for multianalyte detection. In: The sixteenth annual international conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE, pp 327–330

  • Srinivasan V, Pamula V, Pollack M, Fair R (2003b) Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. In: 7th international conference on Micro Total Analysis Systems (Micro TAS). pp 1287–1290

  • Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta 507:145–150. doi:10.1016/j.aca.2003.12.030

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of NPMASS/ADA for providing necessary funding to develop the low cost microfluidic characterization setup at VNIT Nagpur on which all the above experiments are performed. The authors are also thankful to Hareesh Reddy for setting up the experiment of contact angle measurement and Priyanka Onkar for designing the complete electronics system. The help provided by Muskan Agrawal for mixing efficiency calculations is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Jain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V., Raj, T.P., Deshmukh, R. et al. Design, fabrication and characterization of low cost printed circuit board based EWOD device for digital microfluidics applications. Microsyst Technol 23, 389–397 (2017). https://doi.org/10.1007/s00542-015-2680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2680-7

Keywords

Navigation