Skip to main content
Log in

An overview of magnetic micro-robot systems for biomedical applications

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Untethered and wirelessly-controlled micro-robots have been catching substantial attention for a long time due to their great potentials in biomedical areas. Their small sizes and property of wireless magnetic actuation and control make them fit in tiny and closed environments both in vitro and in vivo such as lab-on-a-chip and human blood vessels for micromanipulations, minimum/non-invasive theoretical and diagnostic applications, respectively. In recent years, micro-robots driven by magnetic fields become a hotspot due to their good controllability and motion performance they have shown in both wet and dry environments. And they hardly bring harm under magnetic actuation and control, which qualify them especially for biomedical applications. This paper reviews the state of the art of hjbvmagnetic-micro-robot systems, including the related knowledge and theories, design works of magnetic micro-robots and magnetic navigation systems. For a straightforward understanding, several types of magnetic micro-robot systems are presented. And some applications of magnetic micro-robot systems are introduced at the end to show their great potentials. However, for further developments, many obstacles still need to be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. In the paper, if without specialized indication, the bold font means three dimensional column vector.

References

  • Abbott JJ, Nagy Z, Beyeler F, Nelson BJ (2007a) Robotics in the small, part i: microbotics. Robot Autom Mag IEEE 14(2):92–103

    Article  Google Scholar 

  • Abbott JJ, Ergeneman O, Kummer MP, Hirt AM, Nelson BJ (2007b) Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. Robot IEEE Trans 23(6):1247–1252

    Article  Google Scholar 

  • Abbott JJ, Peyer KE, Dong LX, Nelson BJ (2009) How should microrobots swim? Int J Robot Res 28(1112):1434–1447

    Article  Google Scholar 

  • Bouchebout S, Bolopion A, Abrahamians JO, Régnier S (2012) An overview of multiple DoF magnetic actuated micro-robots. J Micro-Nano Mechatron 7(4):97–113

    Article  Google Scholar 

  • Brewer RD, Loewke KE, Duval EF, Salisbury JK (2008) Force control of a permanent magnet for minimally-invasive procedures. 2008 2nd IEEE RAS&EMBS international conference on biomedical robotics and biomechatronics, pp 580–586

  • Brock O, Trinkle J, Ramos F (2009) Dynamic modeling of stick slip motion in an untethered magnetic micro-robot. Robotics: science and systems IV. MIT Press, Cambridge

    Google Scholar 

  • Carlsen RW, Edwards MR, Zhuang J, Pacoret C, Sitti M (2014) Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip 14(19):3850–3859

    Article  Google Scholar 

  • Choi H, Choi J, Jang G, Park JO, Park S (2009) Two-dimensional actuation of a microrobot with a stationary two-pair coil system. Smart Mater Struct 18(5):55007–55009

    Article  Google Scholar 

  • Choi J, Choi H, Jeong S, Park BJ, Ko SY, Park JO, Park S (2013) Position-based compensation of electromagnetic fields interference for electromagnetic locomotive microrobot. Proc Inst Mech Eng Part C: J Mech Eng Sci 227(9):1915–1926

    Article  Google Scholar 

  • Debora S, Mark AG, Gibbs JG, Cornelia M, Morozov KI, Leshansky AM et al (2014) Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8(9):8794–8801

    Article  Google Scholar 

  • Diller E, Ye Z, Sitti M (2011) Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects. Intelligent robots and systems (IROS), 2011 IEEE/RSJ international conference on vol 32, pp 1291–1296. IEEE

  • Diller E, Floyd S, Pawashe C, Sitti M (2011) Control of multiple heterogeneous magnetic micro-robots on non-specialized surfaces. Robotics and automation (ICRA), 2011 IEEE international conference on vol 124, pp 115–120. IEEE

  • Diller E, Miyashita S, Sitti M (2012) Remotely addressable magnetic composite micropumps. RSC Adv 2(9):3850–3856

    Article  Google Scholar 

  • Dogangil G, Ergeneman O, Abbott JJ, Pane S, Hall H, Muntwyler S et al (2008) Toward targeted retinal drug delivery with wireless magnetic microrobots. IEEE

  • Donald BR, Levey CG, Mcgray CD, Paprotny I, Rus D (2006) An untethered, electrostatic, globally controllable mems micro-robot. Microelectromech Syst J 15(1):1–15

    Article  Google Scholar 

  • Ergeneman O, Dogangil G, Abbott JJ, Nazeeruddin MK, Nelson BJ (2007) A magnetically controlled wireless intraocular oxygen sensor: concept, prototype, and in vitro experiments. Conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society. Conference vol 2007, pp 4189–4193

  • Ergeneman O, Dogangil G, Kummer MP, Abbott JJ, Nazeeruddin MK, Nelson BJ (2008) A magnetically controlled wireless optical oxygen sensor for intraocular measurements. Sens J IEEE 8(1):29–37

    Article  Google Scholar 

  • Eric D, Metin S (2014) Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv Funct Mater 24(28):4397–4404

    Article  Google Scholar 

  • Floyd S, Pawashe C, Sitti M (2008) An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. Proceedings—IEEE international conference on robotics and automation, pp 419–424

  • Floyd S, Pawashe C, Sitti M (2009) Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot. Robot IEEE Trans 25(6):1332–1342

    Article  Google Scholar 

  • Folio D, Dahmen C, Wortmann T, Zeeshan MA, Shou K, Nelson BJ et al (2011) MRI magnetic signature imaging, tracking and navigation for targeted micro/nano-capsule therapeutics. Intelligent robots and systems (IROS), 2011 IEEE/RSJ international conference on vol 30, pp 1297–1303. IEEE

  • Gillies GT, Ritter RC, Broaddus WC, Grady MS, Iii MAH, Mcneil RG (1994) Magnetic manipulation instrumentation for medical physics research. Rev Sci Instrum 65(3):533–562

    Article  Google Scholar 

  • Go G, Choi H, Jeong S, Lee C, Bang JP, Ko SY et al (2014) Position-based magnetic field control for an electromagnetic actuated microrobot system. Sens Actuators, A 205(1):215–223

    Article  Google Scholar 

  • Go G, Choi H, Jeong S, Lee C, Ko SY, Park JO et al (2015) Electromagnetic navigation system using simple coil structure (4 coils) for 3-d locomotive microrobot. IEEE Trans Magn 51(4):1–7

    Google Scholar 

  • Han B, Park SS (2008) Gradient waveform synthesis for magnetic propulsion using mri gradient coils. Phys Med Biol 53(17):4639–4649

    Article  MathSciNet  Google Scholar 

  • Hou MT, Shen HM, Jiang GL, Lu CN, Hsu IJ, Yeh JA (2010) A rolling locomotion method for untethered magnetic microrobots. Appl Phys Lett 96(2):024102

    Article  Google Scholar 

  • Ishiyama K, Arai KI, Sendoh M, Yamazaki A (2002) Spiral-type micro-machine for medical applications. J Micromechatron 2(1):77–86

    Article  Google Scholar 

  • Ivan IA, Hwang G, Agnus J, Rakotondrabe M, Chaillet N, Régnier S (2011) First experiments on MagPieR: a planar wireless magnetic and piezoelectric microrobot. Robotics and automation (ICRA), 2011 IEEE international conference on vol 124, pp 102–108. IEEE

  • Jeon S, Jang G, Choi H, Park S (2010) Magnetic navigation system with gradient and uniform saddle coils for the wireless manipulation of micro-robots in human blood vessels. Magn IEEE Trans 46(6):1943–1946

    Article  Google Scholar 

  • Jeon SM, Jang GH, Choi JH, Park SH, Park JO (2011) Precise manipulation of a microrobot in the pulsatile flow of human blood vessels using magnetic navigation system. J Appl Phys 109(7):07B316

    Article  Google Scholar 

  • Jeon SM, Jang GH, Choi HC, Park SH, Park JO (2012) Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels. J Appl Phys 111(7):07E702

    Google Scholar 

  • Jeon SM, Nam JK, Choi K, Jang GH (2014) A self-positioning and rolling magnetic microrobot on arbitrary thin surfaces. J Appl Phys 115(17):17E303

    Article  Google Scholar 

  • Jeong S, Choi H, Choi J, Yu C, Park JO, Park S (2010) Novel electromagnetic actuation (ema) method for 3-dimensional locomotion of intravascular microrobot. Sens Actuators, A 157(1):118–125

    Article  Google Scholar 

  • Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) Three-dimensional closed-loop control of self-propelled microjets. Appl Phys Lett 103(17):172404

    Article  Google Scholar 

  • Khalil ISM, Dijkslag HC, Abelmann L, Misra S (2014) Magnetosperm: a microrobot that navigates using weak magnetic fields. Appl Phys Lett 104(22):223701

    Article  Google Scholar 

  • Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans Mechatron 7(1):1–14

    Article  Google Scholar 

  • Kharboutly M, Gauthier M, Chaillet N (2010) Modeling the trajectory of a microparticle in a dielectrophoresis device. J Appl Phys 106(11):114312

    Article  Google Scholar 

  • Kim J, Kim SJ (2014) A novel two-dimensional locomotion scheme of a micro-robot with only a uniform magnetic field. Robotics and automation (ICRA), 2014 IEEE international conference on pp 2071–2076. IEEE

  • Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) Octomag: an electromagnetic system for 5-dof wireless micromanipulation. Robot IEEE Trans 26(6):1006–1017

    Article  Google Scholar 

  • Latulippe M, Martel S (2014) Dipole field navigation for targeted drug delivery. IEEE ras and embs international conference on biomedical robotics and biomechatronics, pp 320–325

  • Latulippe M, Felfoul O, Dupont PE, Martel S (2016) Enabling automated magnetic resonance imaging-based targeting assessment during dipole field navigation. Appl Phys Lett 108(6):157–184

    Article  Google Scholar 

  • Magdanz V, Sanchez S, Schmidt OG (2013) Development of a sperm-flagella driven micro-bio-robot. Adv Mater 25(45):6581–6588

    Article  Google Scholar 

  • Magdanz V, Medina-Sánchez M, Chen Y, Guix M, Schmidt OG (2015) How to improve spermbot performance. Adv Funct Mater 25(18):2763–2770

    Article  Google Scholar 

  • Magdanz V, Guix M, Hebenstreit F, Schmidt OG (2016) Dynamic polymeric microtubes for the remote‐controlled capture, guidance, and release of sperm cells. Advanced materials

  • Mahoney AW, Cowan DL, Miller KM, Abbott JJ (2012) Control of untethered magnetically actuated tools using a rotating permanent magnet in any position. Robotics and automation (ICRA), 2012 IEEE international conference on vol 20, pp 3375–3380. IEEE

  • Mahoney AW, Nelson ND, Peyer KE, Nelson BJ, Abbott JJ (2014) Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Appl Phys Lett 104(14):144101

    Article  Google Scholar 

  • Martel S, Mathieu JB, Felfoul O, Chanu A, Aboussouan E, Tamaz S et al (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90(11):114105

    Article  Google Scholar 

  • Mathieu JB, Martel S (2006) Magnetic steering of iron oxide microparticles using propulsion gradient coils in MRI. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society. Conference vol 1, pp 472–475

  • Mathieu JB, Martel S (2010) Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI scanner. Magn Reson Med 63(5):1336–1345

    Article  Google Scholar 

  • Mathieu JB, Martel S, Yahia L, Soulez G, Beaudoin G (2003) Preliminary studies for using magnetic resonance imaging systems as a mean of propulsion for microrobots in blood vessels and evaluation of ferromagnetic artefacts. Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian conference on vol 2, pp 835–838. IEEE

  • Mcneil RG, Ritter RC, Wang B, Lawson MA, Gillies GT, Wika KG et al (1995a) Functional design features and initial performance characteristics of a magnetic-implant guidance system for stereotactic neurosurgery. IEEE Trans Biomed Eng 42(8):793–801

    Article  Google Scholar 

  • Mcneil RG, Ritter RC, Wang B, Lawson MA, Gillies GT, Wika KG et al (1995b) Characteristics of an improved magnetic-implant guidance system. IEEE Trans Bio-med Eng 42(8):802–808

    Article  Google Scholar 

  • Mei T, Chen Y, Fu G, Kong D (2002) Wireless drive and control of a swimming microrobot. In: Robotics and automation, 2002. Proceedings ICRA’02. IEEE international conference on vol 2, pp 1131–1136. IEEE

  • Lucarini G, Palagi S, Beccai L, Menciassi, A (2014) A power-efficient propulsion method for magnetic microrobots. International journal of advanced robotic systems, 11

  • Mirko S, Reinmar K, Martin K, Nasreddin A, Jennifer F, Vogl TJ (2004) Vascular guide wire navigation with a magnetic guidance system: experimental results in a phantom. Radiology 232(2):475–481

    Article  Google Scholar 

  • Mirkovic T, Zacharia NS, Scholes GD, Ozin GA (2010) Nanolocomotion—catalytic nanomotors and nanorotors. Small 6(2):159–167

    Article  Google Scholar 

  • Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  Google Scholar 

  • Molloy JE, Padgett MJ (2010) Lights, action: optical tweezers. Contemp Phys 43(4):241–258

    Article  Google Scholar 

  • Moo JGS, Martin P (2015) Chemical energy powered nano/micro/macromotors and the environment. Chem A Eur J 21(1):58–72

    Article  Google Scholar 

  • Nagy Z, Nelson BJ (2012) Lagrangian modeling of the magnetization and the magnetic torque on assembled soft-magnetic mems devices for fast computation and analysis. IEEE Trans Robot 28(4):787–797

    Article  Google Scholar 

  • Nagy Z, Ergeneman O, Abbott JJ, Hutter M, Hirt AM, Nelson BJ (2008) Modeling assembled-MEMS microrobots for wireless magnetic control. Proceedings—IEEE international conference on robotics and automation, pp 874–879

  • Pak OS, Gao W, Wang J, Lauga E (2011) High-speed propulsion of flexible nanowire motors: theory and experiments. Soft Mater 7(18):8169–8181

    Article  Google Scholar 

  • Palagi S, Pensabene V, Beccai L, Mazzolai B, Menciassi A, Dario P (2011) Design and development of a soft magnetically-propelled swimming microrobot. Robotics and automation (ICRA), 2011 IEEE international conference on vol 47, pp 5109–5114. IEEE

  • Palagi S, Mazzolai B, Innocenti C, Sangregorio C, Beccai L (2013) How does buoyancy of hydrogel microrobots affect their magnetic propulsion in liquids? Appl Phys Lett 102(12):124102

    Article  Google Scholar 

  • Pawashe C, Floyd S, Sitti M (2009) Multiple magnetic microrobot control using electrostatic anchoring. Appl Phys Lett 94(16):164108

    Article  Google Scholar 

  • Qiu F, Mhanna R, Zhang L, Ding Y, Sugihara K, Zenobiwong M et al (2013) Artificial bacterial flagella functionalized with temperature-sensitive liposomes for biomedical applications. Solid-state sensors, actuators and microsystems (Transducers and Eurosensors XXVII), 2013 Transducers and Eurosensors XXVII: The 17th international conference on vol 196, pp 2130-2133. IEEE

  • Samuel S, Solovev AA, Sabine S, Schmidt OG (2011) Controlled manipulation of multiple cells using catalytic microbots. Chem Commun 47(2):698–700

    Article  Google Scholar 

  • Sehyuk Y, Evin G, Gracias DH, Metin S (2014) Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Bio-med Eng 61(2):513–521

    Article  Google Scholar 

  • Sendoh M, Ajiro N, Ishiyama K, Inoue M, Arai KI, Hayase T et al (1999) Effect of machine shape on swimming properties of the spiral-type magnetic micro-machine. IEEE Trans Magn 35(5):3688–3690

    Article  Google Scholar 

  • Soichiro T, Zhang L, Qiu F et al (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24(6):811–816

    Article  Google Scholar 

  • Srivastava SK, Medina‐Sánchez M, Koch B, Schmidt OG (2015) Medibots: dual‐action biogenic microdaggers for single‐cell surgery and drug release. Advanced Materials

  • Tunay I (2004) Modeling magnetic catheters in external fields. Engineering in medicine and biology society, 2004. IEMBS ‘04. 26th annual international conference of the IEEE, vol 1, pp 2006–2009. IEEE

  • Veronika M, Schmidt OG (2014) Spermbots: potential impact for drug delivery and assisted reproductive technologies. Expert Opin Drug Deliv 11(8):1125–1129

    Article  Google Scholar 

  • Vollmers K, Frutiger DR, Kratochvil BE, Nelson BJ (2008) Wireless resonant magnetic microactuator for untethered mobile microrobots. Appl Phys Lett 92(14):144103

    Article  Google Scholar 

  • Wang X, Solovev AA, Ananth AN, Gracias DH, Samuel S, Schmidt OG (2013) Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery. Nanoscale 5(4):1294–1297

    Article  Google Scholar 

  • Xu T, Yu J, Yan X, Choi H, Zhang L (2015) Magnetic actuation based motion control for microrobots: an overview. Micromachines 6(9):1346–1364

    Article  Google Scholar 

  • Stereotaxis Niobe System Available. http://www.stereotaxis.com

  • Ye Z, Sitti M (2014) Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab Chip 14(13):2177–2182

    Article  Google Scholar 

  • Yesin KB, Vollmers K, Nelson BJ (2006) Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int J Robot Res 25(5–6):527–536

    Article  Google Scholar 

  • Yu C (2010) Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot. Sens Actuators, A 161(1):297–304

    Article  Google Scholar 

  • Zhou Y, Regnier S, Sitti M (2014) Rotating magnetic miniature swimming robots with multiple flexible flagella. Robot IEEE Trans 30(1):3–13

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the project of the National Natural Science Foundation of China (No. 61327802) and the Youth Fund of the National Natural Science Foundation (No. 61203208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-bo Huang.

Additional information

Liang Zheng and Li-guo Chen have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Chen, Lg., Huang, Hb. et al. An overview of magnetic micro-robot systems for biomedical applications. Microsyst Technol 22, 2371–2387 (2016). https://doi.org/10.1007/s00542-016-2948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2948-6

Keywords

Navigation