Skip to main content
Log in

Viscoelastically coupled dynamics of FG Timoshenko microbeams

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Viscosity effects on the mechanical behaviour of functionally graded (FG) Timoshenko microbeams are investigated; the model possesses both linear nonlinear viscous terms. The Mori–Tanaka homogenisation method is used for the continuous variations of the material properties of the microsystem along the thickness; the Kelvin–Voigt scheme is employed for the internal damping; the shear deformation and rotary inertia are modelled for the viscoelastic microbeam via the Timoshenko theory; the modified couple stress theory is used for size influences. An energy loss/balance via Hamilton’s principle is used for obtaining the equations of motion. Galerkin’s approach together with a continuation method is employed for the mechanical responses. The simultaneous effects of viscosity, being small, and FG materials on the mechanical behaviour are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrianov IV, Awrejcewicz J, Diskovsky AA (2017) Functionally graded rod with small concentration of inclusions: homogenization and optimization. Int J Non Linear Mech 91:189–197

    Article  Google Scholar 

  • Arani AG, Jafari GS, Kolahchi R (2017) Nonlinear vibration analysis of viscoelastic micro nano-composite sandwich plates integrated with sensor and actuator. Microsyst Technol 23(5):1509–1535

    Article  Google Scholar 

  • Asghari M, Rahaeifard M, Kahrobaiyan MH et al (2011) The modified couple stress functionally graded Timoshenko beam formulation. Mater Des 32:1435–1443

    Article  Google Scholar 

  • Attia MA (2017) Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges. Meccanica 52(10):2391–2420

    Article  MathSciNet  Google Scholar 

  • Awrejcewicz J, Krysko A, Pavlov S et al (2017a) Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness. Mech Syst Signal Process 93:415–430

    Article  Google Scholar 

  • Awrejcewicz J, Krysko AV, Pavlov SP et al (2017b) Stability of the size-dependent and functionally graded curvilinear Timoshenko beams. ASME J Comput Nonlinear Dyn 12:041018-1–041018-8

    Google Scholar 

  • Azimi M, Mirjavadi SS, Shafiei N et al (2016) Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam. Appl Phys A 123:104

    Article  Google Scholar 

  • Benedettini F, Rega G (1987) Non-linear dynamics of an elastic cable under planar excitation. Int J Non Linear Mech 22:497–509

    Article  MATH  Google Scholar 

  • Bethe K, Baumgarten D, Frank J (1990) Creep of sensor’s elastic elements: metals versus non-metals. Sens Actuators A 23:844–849

    Article  Google Scholar 

  • Calim FF (2016) Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Compos B Eng 103:98–112

    Article  Google Scholar 

  • Chorsi MT, Chorsi HT (2018) Modeling and analysis of MEMS disk resonators. Microsyst Technol 24(6):2517–2528

    Article  Google Scholar 

  • Deng H, Chen K, Cheng W et al (2017) Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler–Pasternak elastic foundation. Compos Struct 160:152–168

    Article  Google Scholar 

  • Eltaher MA, Khairy A, Sadoun AM et al (2014) Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl Math Comput 229:283–295

    MathSciNet  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH (2015a) Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int J Mech Sci 90:133–144

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2015b) Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int J Eng Sci 91:12–33

    Article  MathSciNet  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH (2016) Size-dependent parametric dynamics of imperfect microbeams. Int J Eng Sci 99:39–55

    Article  MathSciNet  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH (2017) Nonlinear resonant response of imperfect extensible Timoshenko microbeams. Int J Mech Mater Design 13(1):43–55

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2018a) Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Commun Nonlinear Sci Numer Simul 59:592–605

    Article  MathSciNet  Google Scholar 

  • Farokhi H, Ghayesh MH (2018b) Nonlinear mechanics of electrically actuated microplates. Int J Eng Sci 123:197–213

    Article  MathSciNet  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH, Amabili M (2013) Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int J Eng Sci 68:11–23

    Article  MathSciNet  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH, Hussain Sh (2016) Large-amplitude dynamical behaviour of microcantilevers. Int J Eng Sci 106:29–41

    Article  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH, Gholipour A et al (2017) Motion characteristics of bilayered extensible Timoshenko microbeams. Int J Eng Sci 112:1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Gaafar E, Zarog M (2017) A low-stress and low temperature gradient microgripper for biomedical applications. Microsyst Technol 23:5415–5422

    Article  Google Scholar 

  • Ghayesh MH (2017) Nonlinear dynamics of multilayered microplates. J Comput Nonlinear Dyn 13:021006–021012

    Article  Google Scholar 

  • Ghayesh MH (2018a) Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci 124:115–131

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH (2018b) Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. Int J Mech Sci 140:339–350

    Article  Google Scholar 

  • Ghayesh MH (2018c) Mechanics of tapered AFG shear-deformable microbeams. Microsyst Technol 24:1743–1754

    Article  Google Scholar 

  • Ghayesh MH (2018d) Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Appl Math Model 59:583–596

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH (2018e) Nonlinear vibrations of axially functionally graded Timoshenko tapered beams. J Comput Nonlinear Dyn 13:041002–041010

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H (2015a) Chaotic motion of a parametrically excited microbeam. Int J Eng Sci 96:34–45

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H (2015b) Nonlinear dynamics of microplates. Int J Eng Sci 86:60–73

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Amabili M, Farokhi H (2013a) Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int J Eng Sci 71:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2013b) Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos B Eng 50:318–324

    Article  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2013c) Nonlinear behaviour of electrically actuated MEMS resonators. Int J Eng Sci 71:137–155

    Article  MATH  Google Scholar 

  • Ghayesh MH, Amabili M, Farokhi H (2013d) Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci 63:52–60

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2014) In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos B Eng 60:423–439

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Alici G (2016) Size-dependent performance of microgyroscopes. Int J Eng Sci 100:99–111

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Gholipour A (2017a) Oscillations of functionally graded microbeams. Int J Eng Sci 110:35–53

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Gholipour A (2017b) Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams. Int J Mech Sci 122:370–383

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M (2018) Nonlinear oscillations of functionally graded microplates. Int J Eng Sci 122:56–72

    Article  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Hussain Sh (2016) Viscoelastically coupled size-dependent dynamics of microbeams. Int J Eng Sci 109:243–255

    Article  MathSciNet  MATH  Google Scholar 

  • Gholipour A, Farokhi H, Ghayesh MH (2015) In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn 79:1771–1785

    Article  Google Scholar 

  • Hamzah MH, Karim J, Ralib AAM et al (2018) Design and analysis of a boosted pierce oscillator using MEMS SAW resonators. Microsyst Technol 24(1):587–594

    Article  Google Scholar 

  • Hari K, Verma SK, Praveen Krishna IR et al (2018) Out-of-plane dual flexure MEMS piezoresistive accelerometer with low cross axis sensitivity. Microsyst Technol 24(5):2437–2444

    Article  Google Scholar 

  • Li C, Cordovilla F, Ocaña JL (2017) The design and analysis of a novel structural piezoresistive pressure sensor for low pressure measurement. Microsyst Technol 23:5677–5687

    Article  Google Scholar 

  • Liu F, Gao S, Niu S et al (2018) Optimal design of high-g MEMS piezoresistive accelerometer based on Timoshenko beam theory. Microsyst Technol 24(2):855–867

    Article  Google Scholar 

  • Lotfi M, Moghimi Zand M, Isaac Hosseini I et al (2017) Transient behavior and dynamic pull-in instability of electrostatically-actuated fluid-conveying microbeams. Microsyst Technol 23:6015–6023

    Article  Google Scholar 

  • Ma LY, Nordin AN, Soin N (2018) A novel design of a low-voltage low-loss T-match RF-MEMS capacitive switch. Microsyst Technol 24(1):561–574

    Article  Google Scholar 

  • Menon PK, Nayak J, Pratap R (2018) Sensitivity analysis of an in-plane MEMS vibratory gyroscope. Microsyst Technol 24(5):2199–2213

    Article  Google Scholar 

  • Ouakad HM (2017) Comprehensive numerical modeling of the nonlinear structural behavior of MEMS/NEMS electrostatic actuators under the effect of the van der Waals forces. Microsyst Technol 23:5903–5910

    Article  Google Scholar 

  • Paul A, Das D (2016) Free vibration analysis of pre-stressed FGM Timoshenko beams under large transverse deflection by a variational method. Eng Sci Technol Int J 19:1003–1017

    Article  Google Scholar 

  • Pradhan KK, Chakraverty S (2013) Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos B Eng 51:175–184

    Article  Google Scholar 

  • Samaali H, Najar F (2017) Design of a capacitive MEMS double beam switch using dynamic pull-in actuation at very low voltage. Microsyst Technol 23:5317–5327

    Article  Google Scholar 

  • Saxena S, Sharma R, Pant BD (2017) Dynamic characterization of fabricated guided two beam and four beam cantilever type MEMS based piezoelectric energy harvester having pyramidal shape seismic mass. Microsyst Technol 23:5947–5958

    Article  Google Scholar 

  • Shi H, Fan S, Zhang Y (2017) Design and optimization of slit-resonant beam in a MEMS pressure sensor based on uncertainty analysis. Microsyst Technol 23:5545–5559

    Article  Google Scholar 

  • Tang AY, Wu JX, Li XF et al (2014) Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams. Int J Mech Sci 89:1–11

    Article  Google Scholar 

  • Teh KS, Lin L (1999) Time-dependent buckling phenomena of polysilicon micro beams. Microelectron J 30:1169–1172

    Article  Google Scholar 

  • Tuck K, Jungen A, Geisberger A et al (2005) A study of creep in polysilicon MEMS devices. J Eng Mater Technol 127:90–96

    Article  Google Scholar 

  • Wang L, Zhang W, Liu YA et al (2017) Impact analysis of convected motion on the carrier frequency of a carrier-driven gyroscope signal. Microsyst Technol 23:5805–5813

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayesh, M.H. Viscoelastically coupled dynamics of FG Timoshenko microbeams. Microsyst Technol 25, 651–663 (2019). https://doi.org/10.1007/s00542-018-4002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4002-3

Navigation