Skip to main content
Log in

Stiction-protected MEMS switch with low actuation voltage

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Commercial success of microelectromechanical systems (MEMS) switches is limited by several issues. A high actuation voltage requires special circuitry solutions that increase size and cost of the switch. Another problem is the lack of reliability due to the stiction phenomenon. This paper presents a single-pole double-throw MEMS switch with electrostatic actuation and resistive contact. The device is based on an aluminum beam suspended by the torsion springs over the driving and signal electrodes. The design provides the pull-in voltage as low as 4.9 V. At the same time, the switch is equipped with the mechanism that protects it from stiction. The device is able to operate in the passive and active opening regimes. Recovery of the device after stiction in the hot switching conditions is demonstrated. In the cold mode, stiction is not observed at the transmitted DC power up to 25 mW. The resonant properties and response time of the switch are investigated. The on-resistance and the lifecycle are discussed. The proposed design is characterized by the high mechanical reliability. The main reason of failure is an increase of the on-resistance because of carbon accumulation on the platinum contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ansari HR, Khosroabadi S (2018) Design and simulation of a novel RF MEMS shunt capacitive switch with a unique spring for Ka-band application. Microsyst Technol. https://doi.org/10.1007/s00542-018-3989-9

    Google Scholar 

  • Chakraborty S, Bhattacharyya TK (2010) Development of a surface micro-machined binary logic inverter for ultra-low frequency MEMS sensor applications. J Micromech Microeng 20:105026

    Article  Google Scholar 

  • Chen L, Lee H, Guo ZJ, McGruer NE, Gilbert KW, Mall S, Leedy KD, Adams GG (2007) Contact resistance study of noble metals and alloy films using a scanning probe microscope test station. J Appl Phys 102:074910

    Article  Google Scholar 

  • Cheng P, Zhang Y, Mao S, Wang H, Ding G, Zhang C, Dai X, Zhao X (2014) Novel electro-thermal latching micro-switch based on Ni/electrophoretic polymer micro-cantilevers. J Micromech Microeng 24:125015

    Article  Google Scholar 

  • Chua GL, Singh P, Soon BW, Liang YS, Jayaraman KG, Kim TT-H, Singh N (2014) Molecular adhesion controlled microelectromechanical memory device for harsh environment data storage. Appl Phys Lett 105:113503

    Article  Google Scholar 

  • Czaplewski DA, Nordquist CD, Dyck CW, Patrizi GA, Kraus GM, Cowan WD (2012) Lifetime limitations of ohmic, contacting RF MEMS switches with Au, Pt and Ir contact materials due to accumulation of ‘friction polymer’ on the contacts. J Micromech Microeng 22:105005

    Article  Google Scholar 

  • Dai C-L, Chen J-H (2006) Low voltage actuated RF micromechanical switches fabricated using CMOS-MEMS technique. Microsyst Technol 12:1143–1151

    Article  Google Scholar 

  • Daneshmand M, Mansour RR (2011) RF MEMS satellite switch matrices. IEEE Microw Mag 12:92–109

    Article  Google Scholar 

  • Ekkels P, Rottenberg X, Puers R, Tilmans HAC (2009) Evaluation of platinum as a structural thin film material for RF-MEMS devices. J Micromech Microeng 19:065010

    Article  Google Scholar 

  • Goggin R, Fitzgerald P, Stenson B, Carty E, McDaid P (2015) Commercialization of a reliable RF MEMS switch with integrated driver circuitry in a miniature QFN package for RF instrumentation applications. In: 2015 IEEE MTT-S International Microwave Symposium. https://doi.org/10.1109/MWSYM.2015.7166959

  • Haider N, Caratelli D, Yarovoy AG (2013) Recent developments in reconfigurable and multiband antenna technology. Int J Antenn Propag 2013:869170

    Article  Google Scholar 

  • Happich J (2018) MEMS goes into 10A power switches. eeNews Europe. http://www.eenewseurope.com/news/mems-goes-10a-power-switches. Accessed 28 Sept 2018

  • Haupt RL, Lanagan M (2013) Reconfigurable antennas. IEEE Antennas Propag Mag 55:49–61

    Article  Google Scholar 

  • Hirata A, Machida K, Kyuragi H, Maeda M (2000) A electrostatic micromechanical switch for logic operation in multichip modules on Si. Sens Actuators 80:119–125

    Article  Google Scholar 

  • Holm R (1967) Electric contacts: theory and application. Springer, Berlin

    Book  Google Scholar 

  • Kaajakari V (2009) Closed form expressions for RF MEMS switch actuation and release time. Electron Lett 45:149–150

    Article  Google Scholar 

  • Kim J-M, Lee S, Park J-H, Baek C-W, Kwon Y, Kim Y-K (2010) Electrostatically driven low-voltage micromechanical RF switches using robust single-crystal silicon actuators. J Micromech Microeng 20:095007

    Article  Google Scholar 

  • Kim M-W, Song Y-H, Yoon J-B (2011) Modeling, fabrication and demonstration of a rib-type cantilever switch with an extended gate electrode. J Micromech Microeng 21:115009

    Article  Google Scholar 

  • Lee T-H, Bhunia S, Mehregany M (2010) Electromechanical computing at 500 °C with silicon carbide. Science 329:1316–1318

    Article  Google Scholar 

  • Lee SW, Park SJ, Campbell EEB, Park YW (2011) A fast and low-power microelectromechanical system-based non-volatile memory device. Nat Commun 2:220

    Article  Google Scholar 

  • Lee JO, Song T-H, Kim M-W, Kang M-H, Oh J-S, Yang H-H, Yoon J-B (2013) A sub-1-volt nanoelectromechanical switching device. Nat Nanotechnol 8:36–40

    Article  Google Scholar 

  • Maciel J, Majumder S, Lampen J, Guthy C (2012) Rugged and reliable ohmic MEMS switches. In: 2012 IEEE/MTT-S international microwave symposium digest. https://doi.org/10.1109/MWSYM.2012.6258368

  • Park J-H, Lee H-C, Park Y-H, Kim Y-D, Ji C-H, Bu J, Nam H-J (2006) A fully wafer-level packaged RF MEMS switch with low actuation voltage using a piezoelectric actuator. J Micromech Microeng 16:2281–2286

    Article  Google Scholar 

  • Patel CD, Rebeiz GM (2011) RF MEMS metal-contact switches with mN-contact and restoring forces and low process sensitivity. IEEE Trans Microw Theory Techn 59:1230–1237

    Article  Google Scholar 

  • Peroulis D, Pacheco SP, Sarabandi K, Katehi LPB (2003) Electromechanical considerations in developing low-voltage RF MEMS switches. IEEE Trans Microw Theory Techn 51:259–270

    Article  Google Scholar 

  • Rebeiz GM (2003) RF MEMS: theory, design, and technology. Wiley, New Jersey

    Book  Google Scholar 

  • Rebeiz GM, Patel CD, Han SK, Ko C-H, Ho KMJ (2013) The search for a reliable MEMS switch. IEEE Microw Mag 14:57–67

    Article  Google Scholar 

  • Schiavone G, Desmulliez MPY, Walton AJ (2014) Integrated magnetic MEMS relays: status of the technology. Micromachines 5:622–653

    Article  Google Scholar 

  • Seki T, Yamamoto J, Murakami A, Yoshitake N, Hinuma K, Fujiwara T, Sano K, Matsushita T, Sato F, Oba M (2013) An RF MEMS switch for 4G Front-Ends. In: 2013 IEEE MTT-S International Microwave Symposium Digest (MTT). https://doi.org/10.1109/mwsym.2013.6697501

  • Shekhar S, Vinoy KJ, Ananthasuresh GK (2018) Low-voltage high-reliability MEMS switch for millimeter wave 5G applications. J Micromech Microeng 28:075012

    Article  Google Scholar 

  • Sinha N, Jones TS, Guo Z, Piazza G (2012) Body-biased complementary logic implemented using AlN piezoelectric MEMS switches. J Microelectromech Syst 21:484–496

    Article  Google Scholar 

  • Song Y-H, Kim M-W, Lee JO, Ko S-D, Yoon J-B (2013) Complementary dual-contact switch using soft and hard contact materials for achieving low contact resistance and high reliability simultaneously. J Microelectromech Syst 22:846–854

    Article  Google Scholar 

  • Toler BF, Coutu RA, McBride JW (2013) A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches. J Micromech Microeng 23:103001

    Article  Google Scholar 

  • Tsai C-Y, Kuo W-T, Lin C-B, Chen T-L (2008) Design and fabrication of MEMS logic gates. J Micromech Microeng 18:045001

    Article  Google Scholar 

  • Uvarov IV, Kupriyanov AN (2018) Investigation of characteristics of electrostatically actuated MEMS switch with an active contact breaking mechanism. Russ Microlectron 47:307–316

    Article  Google Scholar 

  • Uvarov IV, Naumov VV, Amirov II (2012) Resonance properties of multilayer metallic nanocantilevers. Proc SPIE 8700:87000S-1

    Google Scholar 

  • Uvarov IV, Naumov VV, Koroleva OM, Vaganova EI, Amirov II (2016) A low actuation voltage bistable MEMS switch: design, fabrication and preliminary testing. Proc SPIE 10224:102241A

    Google Scholar 

  • Uvarov IV, Naumov VV, Kupriyanov AN, Koroleva OM, Vaganova EI, Amirov II (2017) Resistive contact MEMS switch in a “hot” operation mode. J Phys Conf Ser 917:082001

    Article  Google Scholar 

  • van Spengen WM, Puers R, de Wolf I (2003) On the physics of stiction and its impact on the reliability of microstructures. J Adhesion Sci Technol 17:563–582

    Article  Google Scholar 

  • Xiang W, Lee C (2010) Nanoelectromechanical torsion switch of low operation voltage for nonvolatile memory application. Appl Phys Lett 96:193113

    Article  Google Scholar 

  • Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer Science + Business Media LLC, Boston

    Book  Google Scholar 

  • Zareie H, Rebeiz GM (2014) Compact high-power SPST and SP4T RF MEMS metal-contact switches. IEEE Trans Microw Theory Techn 62:297–305

    Article  Google Scholar 

  • Zhang X, Adelegan OJ, Yamaner FY, Oralkan O (2018) A fast-switching (1.35-μs) low-control-voltage (2.5-V) MEMS T/R switch monolithically integrated with a capacitive micromachined ultrasonic transducer. J Microelectromech Syst 27:190–200

    Article  Google Scholar 

  • Zheng W-B, Huang Q-A, Liao X-P, Li F-X (2005) RF MEMS membrane switches on GaAs substrates for X-band applications. J Microelectromech Syst 14:464–471

    Article  Google Scholar 

  • Zolfaghari P, Arzhang V, Zolfaghari M (2018) A low loss and power efficient micro-electro-thermally actuated RF MEMS switch for low power and low loss applications. Microsyst Technol 24:3019–3032

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Russian Foundation for Basic Research (RFBR) research project No. 16-37-60065 mol_a_dk and performed using the equipment of Facilities Sharing Centre “Diagnostics of Micro- and Nanostructures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia V. Uvarov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvarov, I.V., Kupriyanov, A.N. Stiction-protected MEMS switch with low actuation voltage. Microsyst Technol 25, 3243–3251 (2019). https://doi.org/10.1007/s00542-018-4188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4188-4

Navigation