Skip to main content

Advertisement

Log in

Power analysis attack resistable hardware cryptographical circuit design using reversible logic gate in quantum cellular automata

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) technology leads to rapid high-density combinatory low power exploitation to realize the reversible logic circuit in the nanoscale era. Reversible logic is an alternative to overcome excess energy indulgence of irreversible process. This paper illustrates a cost-effective, energy-efficient Universal Reversible Logic Gate in QCA framework which is capable of designing power analysis attack resistable hardware cryptographical circuit. The proposed (URLGs: U1 and U2) has been tested with simulator QCADesigner V2.0.3, outshined the existing pattern relating to the area, gate count, garbage count, and quantum cost. We found 37.5% garbage minimization is achieved compared to NFT, which is utmost minimization of garbage ever reported in QCA literature. Thirteen three variable standard Boolean functions are considered as logic benchmarks to guesstimate the capability and efficiency of proposed URLG in QCA circuit implementation and synthesizing logic gates. In average, our proposed U2 achieved 36.66% improvement in energy dissipation for different kink energy ratios over early reported work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Abutaleb MM (2018) QCAPUF: QCA-based physically unclonable function as a hardware security primitive. Semicond Sci Technol 33(4):045011. https://doi.org/10.1088/1361-6641/aab458

    Article  Google Scholar 

  • Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17:525–532

    Article  MathSciNet  Google Scholar 

  • Das K, De D (2010) Novel approach to design a testable conservative logic gate for QCA implementation. In: Advance computing conference (IACC), 2010 IEEE 2nd International. IEEE, pp 82–87

  • Das JC, De D (2016) User authentication based on quantum-dot cellular automata using reversible logic for secure nanocommunication. Arab J Sci Eng 41(3):773–784

    Article  MathSciNet  Google Scholar 

  • Das JC, De D (2017) Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst Technol 23(9):4155–4168

    Article  Google Scholar 

  • Feynman R (1985) Quantum mechanical computers. Opt News 11:11–20

    Article  Google Scholar 

  • Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253

    Article  MathSciNet  Google Scholar 

  • Gadim MR, Navimipour NJ (2018) A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol 24(2):1295–1305. https://doi.org/10.1007/s00542-017-3502-x

    Article  Google Scholar 

  • Haghparast M, Navi K (2008) A novel fault tolerance reversible gate for nanotechnology based system. Am J Appl Sci 5(5):519–523

    Article  Google Scholar 

  • Haghparast M et al (2008) Design of a novel reversible multiplier circuit using HNG gate in nanotechnology. World Appl Sci 3(6):974–978

    Google Scholar 

  • Huang J, Momenzadeh M, Schiano L, Lombardi F (2005) Simulation based design of modular QCA circuits. In: Proceedings of IEEE conference on nanotechnology, Nagoya

  • Kakali D, Mukhopadhyay D, Dutta P (2017) Comprehensive study on the performance comparison of logically reversible and irreversible parity generator and checker designs using two-dimensional two-dot one-electron QCA. Microsyst Technol 25:1659–1667

    Google Scholar 

  • Kelsey J, Schneier B, Wagner D, Hall C (1998) Side channel cryptanalysis of product ciphers. In: Quisquater J-J, Deswarte Y, Meadows C, Gollmann D (eds) ESORICS 1998, vol 1485. LNCS. Springer, Heidelberg, pp 97–110

    Google Scholar 

  • Kocher P, Jaffe J, Jun B (1999) Differential power analysis. In: Wiener M (ed) CRYPTO 1999, vol 1666. LNCS. Springer, Heidelberg, pp 388–397

    Google Scholar 

  • Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5(3):183–191

    Article  MathSciNet  Google Scholar 

  • Lent CS, Taugaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4:49–57

    Article  Google Scholar 

  • Liu W, Srivastava S, O’Neill M, Swartzlander EE (2014) Security issues in QCA circuit design-power analysis attacks. In: Field-coupled nanocomputing. Springer, Berlin, pp 194–222

  • Ma X, Huang J, Metra C, Lombardi F (2008) Reversible gates and testability of one dimensional arrays of molecular QCA. Springer J Electron Test 24(1–3):297–311

    Article  Google Scholar 

  • Maslov D, Dueck GW (2004) Reversible cascades with minimal garbage. IEEE Trans CAD 23(11):1497–1509

    Article  Google Scholar 

  • Momenzadeh M, Huang J, Tahoori MB, Lombardi F (2005) Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. In: IEEE Trans. on aided design of integrated circuits and systems, vol 24, pp 1881–1893

  • Pain P, Das K et al (2019) Novel true random number generator based hardware cryptographic architecture using quantum-dot cellular automata. Int J Theor Phys. https://doi.org/10.1007/s10773-019-04189-2

    Article  MathSciNet  MATH  Google Scholar 

  • Peres A (1985) Reversible logic and quantum computers. Phys Rev A 32(6):3266–3276. https://doi.org/10.1103/PhysRevA.32.3266

    Article  MathSciNet  Google Scholar 

  • Sadhu A, Das K, De D, Kanjilal MR (2019) SSTRNG: self starved feedback SRAM based true random number generator using quantum cellular automata. Microsyst Technol. https://doi.org/10.1007/s00542-019-04525-w

    Article  Google Scholar 

  • Sen B, Sikdar BK (2007) Characterization of universal NAND-NOR-inverter QCA gate. In: 11th IEEE VLSI design and test symposium, Kolkata, August 8–11

  • Sen B, Dutta M, Some S, Sikdar BK (2014) Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM J Emerg Technol Comput Syst (JETC) 11(3):30

    Google Scholar 

  • Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCAPro—an error-power estimation tool for QCA circuit design. IEEE Int Symp Circ Syst (ISCAS) 2011:2377–2380. https://doi.org/10.1109/ISCAS.2011.5938081

    Article  Google Scholar 

  • Thapliyal H, Ranganathan N (2008) Testable reversible latches for molecular QCA. In: Nanotechnology, 2008. NANO ‘08. 8th IEEE conference, pp 699–702

  • Thapliyal H, Ranganathan N (2009) Design of efficient reversible binary subtractors based on a new reversible gate. In: VLSI, 2009. ISVLSI ‘09. IEEE Computer Society Annual Symposium on 13–15 May 2009, pp 229–234

  • Thapliyal H, Ranganathan N (2010) Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans Nanotechnol 9(1):62–69. https://doi.org/10.1109/TNANO.2009.2025038

    Article  Google Scholar 

  • Thapliyal H, Zwolinski M (2006) Reversible logic to cryptographic hardware: a new paradigm. In: 49th IEEE international Midwest symposium on circuits and systems, 2006. MWSCAS’06, vol 1, pp 342–346. IEEE

  • Thoori MB, Huang J, Momenzadeh M, Lombardi F (2004) Testing of quantum Cell automata. IEEE Trans Nanotechnol 3(4):432–442

    Article  Google Scholar 

  • Toffoli T (1980) Reversible computing. Tech Memo MIT/LCS/TM-151, MIT Lab for Computer Science

  • Walus K et al (2002) ATIPS laboratory QCADesigner. ATIPS Laboratory, University of Calgary, Canada. http://www.qcadesigner.ca

  • Wang W, Zhang R, Walus K, Jullien GA (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Science and Engineering Research Board (DST-SERB), Govt. of India, for providing with the grant for the accomplishment of the project under the Project File No. ECR/2016/000613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pain, P., Das, K., Sadhu, A. et al. Power analysis attack resistable hardware cryptographical circuit design using reversible logic gate in quantum cellular automata. Microsyst Technol 28, 779–791 (2022). https://doi.org/10.1007/s00542-019-04581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04581-2

Navigation