Skip to main content
Log in

Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Piriformospora indica is a root endophytic fungus with plant-promoting properties in numerous plant species and induces resistance against root and shoot pathogens in barley, wheat, and Arabidopsis. A study over several years showed that the endophyte P. indica colonised the roots of the most consumed vegetable crop tomato. P. indica improved the growth of tomato resulting in increased biomass of leaves by up to 20%. Limitation of disease severity caused by Verticillium dahliae by more than 30% was observed on tomato plants colonised by the endophyte. Further experiments were carried out in hydroponic cultures which are commonly used for the indoor production of tomatoes in central Europe. After adaptation of inoculation techniques (inoculum density, plant stage), it was shown that P. indica influences the concentration of Pepino mosaic virus in tomato shoots. The outcome of the interaction seems to be affected by light intensity. Most importantly, the endophyte increases tomato fruit biomass in hydroponic culture concerning fresh weight (up to 100%) and dry matter content (up to 20%). Hence, P. indica represents a suitable growth promoting endophyte for tomato which can be applied in production systems of this important vegetable plant not only in soil, but also in hydroponic cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  PubMed  Google Scholar 

  • Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234–243

    Article  PubMed  Google Scholar 

  • Barazani O, Von Dahl CC, Baldwin IT (2007) Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiol 144:1223–1232

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Lee B, Robb J (2004) Tolerance to a non-host isolate of Verticillium dahliae in tomato. Physiol Mol Plant Pathol 64:283–291

    Article  CAS  Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. J Gen Virol 34:475–483

    Article  CAS  PubMed  Google Scholar 

  • Cordoba-Selles MC, García-Rández A, Alfaro-Fernández A, Jordá-Gutiérrez C (2007) Seed transmission of Pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Dis 91:1250–1254

    Article  Google Scholar 

  • De Kreij C, Voogt W, van den Bos AL, Baas R (1997) Voedingsoplossingen voor de teelt van tomaat in gesloten teeltsystemen. Brochure VG Tomaat, The Netherlands

    Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Deshmukh SD, Kogel KH (2007) Piriformospora indica protects barley from root rot caused by Fusarium graminearum. J Plant Dis Prot 114:263–268

    Google Scholar 

  • Deshmukh SD, Hueckelhoven R, Schaefer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450–18457

    Article  CAS  PubMed  Google Scholar 

  • Dobinson KF, Tenuta GK, Lazarovits G (1996) Occurrence of race 2 of Verticillium dahliae in processing tomato fields in southwestern Ontario. Can J Plant Pathol 18:55–58

    Google Scholar 

  • Drüge U, Baltruschat H, Franken P (2007) Piriformospora indica promotes adventitious root formation in cuttings. Sci Hortic 112:422–426

    Article  Google Scholar 

  • Feller C, Bleiholder H, Buhr L, Hack H, Hess M, Klose R, Meier U, Stauss R, van den Boom T, Weber E (1995) Phänologische Entwicklungsstadien von Gemüsepflanzen: II. Fruchtgemüse und Hülsenfrüchte. Nachr bl Dtsch Pflanzenschutzd 47:217–232

    Google Scholar 

  • Franken P, Requena N, Bütehorn B, Krajinski F, Kuhn G, Lapopin L, Mann P, Rhody D, Stommel M (2000) Molecular analysis of the arbuscular mycorrhiza symbiosis. Arch Agron Soil Sci 45:271–286

    Article  CAS  Google Scholar 

  • French CJ, Dubeau C, Bunckle A, Ferguson G, Haesevoets R, Bouthillier M, Bernardy MG (2008) Overview of Pepino mosaic virus research. Can J Plant Pathol 30:373–374

    Google Scholar 

  • Gold J, Lee B, Robb J (1996) Colonization of tomatoes by Verticillium dahliae: determinative phase II. Can J Bot 74:1279–1288

    Article  Google Scholar 

  • Hanssen IM, Paeleman A, Vandewoestijne E, Van Bergen L, Bragard C, Lievens B, Vanachter ACRC, Thomma BPHJ (2009) Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathol 58:450–460

    Article  CAS  Google Scholar 

  • Harrington MA, Dobinson KF (2000) Influences of cropping practices on Verticillium dahliae populations in commercial processing tomato fields in Ontario. Phytopathology 90:1017

    Article  Google Scholar 

  • Huisman OC, Ashworth LJ Jr (1976) Influence of crop rotation on survival of Verticillium albo-atrum in soils. Phytopathology 66:978–981

    Article  Google Scholar 

  • Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291

    Article  Google Scholar 

  • Jones RAC, Koenig R, Lesemann DE (1980) Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Ann Appl Biol 94:61–68

    Article  CAS  Google Scholar 

  • Jordá C, Lázaro Pérez A, Martínez-Culebras PV (2001) First report of Pepino mosaic virus on natural hosts. Plant Dis Notes 85:1292

    Google Scholar 

  • Kaldorf M, Koch B, Rexer KH, Kost G, Varma A (2005) Patterns of interaction between Populus Esch5 and Piriformospora indica: a transition from mutualism to antagonism. Plant Biol 7:210–218

    Article  CAS  PubMed  Google Scholar 

  • Ligoxigakis EK, Vakalounakis DJ (1994) The incidence and distribution of races of Verticillium dahliae in Crete. Plant Pathol 43:755–758

    Article  Google Scholar 

  • Mansoori B, Milton JM, Smith CJ (1995) Isolation and partial purification of a phytotoxin related to pathogenic Verticillium species. J Phytopathol 143:33–36

    Article  CAS  Google Scholar 

  • Pegg GF (1974) Verticillium diseases. Rev Plant Pathol 53:157–182

    Google Scholar 

  • Pegg GF, Brady BL (2002) Verticillium wilts. Oxford, UK

  • Peskan-Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmuller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122:465–477

    Article  CAS  Google Scholar 

  • Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  Google Scholar 

  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against Cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Dis 80:891–894

    Google Scholar 

  • Sahay N, Varma A (1999) Piriformospora indica, a new biological hardening tool for micropropagated plants. FEMS Letters 181:297–302

    Article  CAS  Google Scholar 

  • Savvas D (2003) Hydroponics: a modern technology supporting the application of integrated crop management in greenhouse. J Food Agric Environ 1:80–86

    Google Scholar 

  • Schwarz D, Beuch U, Fakhro A, Bandte M, Büttner C, Obermeier C (2009) Spread and interaction of Pepino mosaic virus (PepMV) and Pythium aphanidermatum in a closed nutrient solution recirculation system: effects on tomato growth and yield. Plant Pathol, accepted

  • Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878

    Article  CAS  PubMed  Google Scholar 

  • Serfling A, Wirsel SGR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97:523–531

    Article  CAS  PubMed  Google Scholar 

  • Shahollari B, Varma A, Oelmuller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958

    Article  CAS  PubMed  Google Scholar 

  • Shahollari B, Vadassery J, Varma A, Oelmuller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J 50:1–13

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Schmid M, Rothballer M, Hause G, Zuccaro A, Imani J, Kampfer P, Domann E, Schäfer P, Hartmann A, Kogel KH (2008) Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell Microbiol 10:2235–2246

    Article  CAS  PubMed  Google Scholar 

  • Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I, Kapulnik Y (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant Microbe Interact 12:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247

    Article  CAS  PubMed  Google Scholar 

  • Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A, Grundler FM, Oelmuller R (2008) PYK10, a beta-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J 54:428–439

    Article  CAS  PubMed  Google Scholar 

  • Shittu HO, Castroverde DCM, Nazar RN, Robb J (2009) Plant-endophyte interplay protects tomato against a virulent Verticillium. Planta 229:415–426

    Article  CAS  PubMed  Google Scholar 

  • Sinha AK, Wood RKS (1968) Studies on nature of resistance in tomato plants to Verticillium albo-artrum. Ann Appl Biol 62:319–327

    Article  Google Scholar 

  • Sirrenberg A, Goebel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589

    Article  CAS  PubMed  Google Scholar 

  • Soler-Aleixandre S, Lopez C, Diez MJ, de Castro AP, Nuez F (2005) Association of Pepino mosaic virus with tomato collapse. J Phytopathol 153:464–469

    Article  Google Scholar 

  • Spence NJ, Basham J, Mumford RA, Hayman G, Edmondson R, Jones DR (2006) Effect of Pepino mosaic virus on the yield and quality of glasshouse-grown tomatoes in the UK. Plant Pathol 55:595–606

    Article  Google Scholar 

  • Stanghellini ME, Rasmussen SL (1994) Hydroponics—a solution for zoosporic pathogens. Plant Dis 78:1129–1138

    Google Scholar 

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  CAS  PubMed  Google Scholar 

  • Talboys PW (1984) Chemical control of verticillium wilts. Phytopathol Mediterr 23:163–175

    Google Scholar 

  • Ton J, Van Pelt JA, van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15:27–34

    Article  CAS  PubMed  Google Scholar 

  • Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novak O, Strnad M, Ludwig-Muller J, Oelmuller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant Microbe Interact 21:1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Van der Vlugt RAA, Cuperus C, Vimk J, Stijger CCMM, Naaldwijk AA, Lesemann DE, Verhoeven JTJ, Roenhorst JW (2002) Identification and characterization of Pepino mosaic potexvirus in tomato. EPPO Bull 32:503–508

    Article  Google Scholar 

  • van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Varma A, Verma S, Sudah SN, Franken P (1999) Piriformospora indica, a cultivable plant growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    CAS  PubMed  Google Scholar 

  • Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. nov. sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  CAS  PubMed  Google Scholar 

  • Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, Schäfer P, Kogel KH (2008) Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J Plant Physiol 165:60–70

    Article  CAS  PubMed  Google Scholar 

  • Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A. Fakhro is supported by a scholarship from Al-Furat University (Syria) and D. R. Andrade-Linares by a grant of the German Academic Exchange Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Franken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakhro, A., Andrade-Linares, D.R., von Bargen, S. et al. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20, 191–200 (2010). https://doi.org/10.1007/s00572-009-0279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0279-5

Keywords

Navigation