Skip to main content

Advertisement

Log in

Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in Pb–Zn mine sites of central south China

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

To advance our understanding of ectomycorrhizal fungal communities in mining areas, the diversity and composition of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana Lamb.) and soil chemistry were investigated in Taolin lead–zinc (Pb–Zn) mine tailings (TLT), two fragmented forest patches in a Huayuan Pb–Zn mineland (HY1 and HY2), and a non-polluted forest in Taolin in central south China. Ectomycorrhizal fungal species were identified by morphotyping and sequence analyses of the internally transcribed spacer regions of ribosomal DNA. The two study sites in the Huayuan mineland (HY1 and HY2) were significantly different in soil Pb, Zn, and cadmium (Cd) concentrations, but no significant difference was observed in ectomycorrhizal colonization, ectomycorrhizal fungal richness, diversity, or rank–abundance. In addition, the similarity of ectomycorrhizal fungal communities between HY1 and HY2 was quite high (Sørensen similarity index = 0.47). Thus, the concentration of heavy metals may not be determining factors in the structure of these communities. In the tailings, however, significantly lower ectomycorrhizal colonization and ectomycorrhizal fungal richness were observed. The amounts of Pb and Zn in the tailing sand were higher than the non-polluted forest but far lower than in HY1. Thus, these heavy metals did not account for the reduced colonization and ectomycorrhizal fungal richness in TLT. The ectomycorrhizal fungal community in TLT was dominated by four pioneer species (Rhizopogon buenoi, Tomentella ellisii, Inocybe curvipes, and Suillus granulatus), which collectively accounted for 93.2 % of root tip colonization. The immature soil conditions in tailing (low N and P, sand texture, and lack of organic matter) may only allow certain pioneer ectomycorrhizal fungal species to colonize the site. When soil samples from four sites were combined, we found that the occurrences of major ectomycorrhizal fungal taxa were not clearly related to the concentrations of Pb, Zn, and Cd. In conclusion, our results suggest that ectomycorrhizal fungal communities in mining areas are not necessarily affected by heavy metals themselves but could be largely determined by soil maturity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriaensen K, van der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV (2004) A zinc-adapted fungus protects pines from zinc stress. New Phytol 161(2):549–555. doi:10.1046/j.1469-8137.2003.00941.x

    Article  CAS  Google Scholar 

  • Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16(8):553–558. doi:10.1007/s00572-006-0072-7

    Article  PubMed  CAS  Google Scholar 

  • Adriaensen K, Vralstad T, Noben JP, Vangronsveld J, Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71(11):7279–7284. doi:10.1128/AEM.71.11.7279-7284.2005

    Article  PubMed  CAS  Google Scholar 

  • Agerer R (1987–1993) Colour atlas of Ectomycorrhizae, vol 1–7th del. Einhorn-Verlag Eduard Dietenberger, Schwäbisch Gmünd, Germany

  • Bell R, Evans C, Roberts E (1988) Decreased incidence of mycorrhizal root tips associated with soil heavy-metal enrichment. Plant Soil 106(1):143–145. doi:10.1007/bf02371206

    Article  CAS  Google Scholar 

  • Blaudez D, Jacob C, Turnau K, Colpaert JV, Ahonen-Jonnarth U, Finlay R, Botton B, Chalot M (2000) Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol Res 104(11):1366–1371. doi:10.1017/s0953756200003166

    Article  CAS  Google Scholar 

  • Bradshaw AD, Johnson M (1992) Revegetation of metalliferous mine wastes: the range of practical techniques used in Western Europe. Elsevier, Manchester

    Google Scholar 

  • Buscardo E, Rodriguez-Echeverria S, Martin MP, De Angelis P, Pereira JS, Freitas H (2010) Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biol 114(8):628–636. doi:10.1016/j.funbio.2010.05.004

    Article  PubMed  Google Scholar 

  • Chappelka AH, Kush JS, Runion GB, Meier S, Kelley WD (1991) Effects of soil-applied lead on seedling growth and ectomycorrhizal colonization of loblolly pine. Environ Pollut 72(4):307–316. doi:10.1016/0269-7491(91)90004-g

    Article  PubMed  CAS  Google Scholar 

  • Chen LQ (1989) Studies on symbiotic mycorrhiza fungi with Masson pine. Forest Res 2(4):357–362 (in Chinese)

    Google Scholar 

  • Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68(1):17–24. doi:10.1007/s13595-010-0003-9

    Article  Google Scholar 

  • Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0. doi: http://viceroy.eeb.uconn.edu/EstimateSPages/

  • Cripps CL (1997) The genus Inocybe in Montana aspen stands. Mycologia 89(4):670–688. doi:10.2307/3761005

    Article  Google Scholar 

  • Cripps CL (2003) Native mycorrhizal fungi with aspen on smelter-impacted sites in the northern Rocky Mountains: occurrence and potential use in reclamation. Paper presented at the National Meeting of the American Society of Mining and Reclamation and the 9th Billings Land Reclamation Symposium, Billings MT, June 3–6, 2003

  • Dickinson NM, Turner AP, Watmough SA, Lepp NW (1992) Acclimation of trees to pollution stress—cellular metal tolerance traits. Ann Bot 70(6):569–572

    CAS  Google Scholar 

  • Dixon R (1988) Response of ectomycorrhizal Quercus rubra to soil cadmium, nickel and lead. Soil Biol Biochem 20(4):555–559. doi:10.1016/0038-0717(88)90072-7

    Article  CAS  Google Scholar 

  • Dixon R, Buschena C (1988) Response of ectomycorrhiza Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105(2):265–271. doi:10.1007/bf02376791

    Article  CAS  Google Scholar 

  • Dora S (1976) Determination of ammonia and Kjeldahl nitrogen by indophenol method. Water Res 10(1):31–36. doi:10.1016/0043-1354(76)90154-8

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118. doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt S, Neubert K, Wollecke J, Munzenberger B, Huttl RF (2007) Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany. Mycorrhiza 17(4):279–290. doi:10.1007/s00572-006-0103-4

    Article  PubMed  CAS  Google Scholar 

  • Gardner JH, Malajczuk N (1988) Recolonisation of rehabilitated bauxite mine sites in western Australia by mycorrhizal fungi. Forest Ecol Manag 24(1):27–42. doi:10.1016/0378-1127(88)90022-9

    Article  Google Scholar 

  • Glen M, Bougher NL, Colquhoun IJ, Vlahos S, Loneragan WA, O’Brien PA, Hardy GESJ (2008) Ectomycorrhizal fungal communities of rehabilitated bauxite mines and adjacent, natural jarrah forest in Western Australia. Forest Ecol Manag 255(1):214–225. doi:10.1016/j.foreco.2007.09.007

    Article  Google Scholar 

  • Guo J, Wu F, Xie S, Yao L, Xie Y (2007) Environmental conditions and exploitation of lead–zinc tailings in Linxiang County, Hunan Province. Chin J Soil Sci 38:553–557 (in Chinese)

    CAS  Google Scholar 

  • Hartley-Whitaker J, Cairney J, Meharg A (2000) Sensitivity to Cd or Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant Soil 218(1):31–42. doi:10.1023/a:1014989422241

    Article  CAS  Google Scholar 

  • Hartley J, Cairney JWG, Freestone P, Woods C, Meharg AA (1999) The effects of multiple metal contamination on ectomycorrhizal Scots pine (Pinus sylvestris) seedlings. Environ Pollut 106(3):413–424. doi:10.1016/s0269-7491(99)00095-0

    Article  PubMed  CAS  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10(8):1855–1871. doi:10.1046/j.0962-1083.2001.01333.x

    Article  PubMed  CAS  Google Scholar 

  • Hrynkiewicz K, Haug I, Baum C (2008) Ectomycorrhizal community structure under willows at former ore mining sites. Eur J Soil Biol 44(1):37–44. doi:10.1016/j.ejsobi.2007.10.004

    Article  Google Scholar 

  • Hui N, Jumpponen A, Niskanen T, Liimatainen K, Jones KL, Koivula T, Romantschuk M, Strommer R (2011) EcM fungal community structure, but not diversity, altered in a Pb-contaminated shooting range in a boreal coniferous forest site in Southern Finland. FEMS Microbiol Ecol 76(1):121–132. doi:10.1111/j.1574-6941.2010.01038.x

    Article  PubMed  CAS  Google Scholar 

  • Ishida TA, Nara K, Tanaka M, Kinoshita A, Hogetsu T (2008) Germination and infectivity of ectomycorrhizal fungal spores in relation to their ecological traits during primary succession. New Phytol 180(2):491–500. doi:10.1111/j.1469-8137.2008.02572.x

    Article  PubMed  Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plantarum 109(2):107–116. doi:10.1034/j.1399-3054.2000.100201.x

    Article  CAS  Google Scholar 

  • Johansson L, Xydas C, Messios N, Stoltz E, Greger M (2005) Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus. Appl Geochem 20(1):101–107. doi:10.1016/j.apgeochem.2004.07.003

    Article  CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol 102(3):429–442. doi:10.1111/j.1469-8137.1986.tb00820.x

    Article  CAS  Google Scholar 

  • Kalin M, Stokes PM (1981) Macrofungi on uranium mill tailings—associations and metal content. Sci Total Environ 19(1):83–94. doi:10.1016/0048-9697(81)90120-0

    Article  CAS  Google Scholar 

  • Ke LX, Liu BR (2005) Resource and ecological distribution of ectomycorrhizal fungi under pine forests of Huangshan Mountain district. Chin J Appl Ecol 2005(16):445–458 (in Chinese)

    Google Scholar 

  • Koljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T, Sen R, Taylor AF, Tedersoo L, Vralstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166(3):1063–1068. doi:10.1111/j.1469-8137.2005.01376.x

    Article  PubMed  CAS  Google Scholar 

  • Krpata D, Peintner U, Langer I, Fitz WJ, Schweiger P (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res 112(Pt 9):1069–1079. doi:10.1016/j.mycres.2008.02.004

    Article  PubMed  Google Scholar 

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357(1–3):38–53. doi:10.1016/j.scitotenv.2005.05.003

    Article  PubMed  CAS  Google Scholar 

  • Lian C, Hogetsu T, Matsushita N, Guerin-Laguette A, Suzuki K, Yamada A (2003) Development of microsatellite markers from an ectomycorrhizal fungus, Tricholoma matsutake, by an ISSR-suppression-PCR method. Mycorrhiza 13(1):27–31. doi:10.1007/s00572-002-0193-6

    Article  PubMed  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42(3):421–428. doi:10.2136/sssaj1978.03615995004200030009x

    Article  CAS  Google Scholar 

  • Liu YG, Zhang HZ, Zeng GM, Huang BR, Li X, Xu WH (2005) Characteristics of tailings from metal mines in Hunan Province, China. J Cent South Univ Technol 12(2):225–228

    CAS  Google Scholar 

  • Malloch D (1982) An undescribed species of Inocybe from mine wastes in Ontario. Can J Bot 60(1):40–45. doi:10.1139/b82-006

    Article  Google Scholar 

  • Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol (5). doi:10.1186/1471-2180-5-28

  • Meharg AA, Cairney JWG (2000) Ectomycorrhizas—extending the capabilities of rhizosphere remediation? Soil Biol Biochem 32(11–12):1475–1484. doi:10.1016/s0038-0717(00)00076-6

    Article  CAS  Google Scholar 

  • Nara K (2006) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169(1):169–178. doi:10.1111/j.1469-8137.2005.01545.x

    Article  PubMed  CAS  Google Scholar 

  • Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159(3):743–756. doi:10.1046/j.1469-8137.2003.00844.x

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy, No. 9. American Society of Agronomy and Soil Science Society of America, Madison, pp 403–430

    Google Scholar 

  • Peay KG, Garbelotto M, Bruns TD (2009) Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J Ecol 97(3):537–547. doi:10.1111/j.1365-2745.2009.01489.x

    Article  Google Scholar 

  • Ruotsalainen AL, Markkola AM, Kozlov MV (2009) Mycorrhizal colonisation of mountain birch (Betula pubescens ssp. czerepanovii) along three environmental gradients: does life in harsh environments alter plant–fungal relationships? Environ Monit Assess 148(1-4):215–232. doi:10.1007/s10661-007-0152-y

    Article  PubMed  CAS  Google Scholar 

  • Pestana Nieto M, Santolamazza Carbone S (2009) Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruitbodies sampling. Mycorrhiza 19(2):91–98. doi:10.1007/s00572-008-0207-0

    Article  PubMed  Google Scholar 

  • Shu WS, Ye ZH, Zhang ZQ, Lan CY, Wong MH (2005) Natural colonization of plants on five lead/zinc mine tailings in Southern China. Restor Ecol 13(1):49–60. doi:10.1111/j.1526-100X.2005.00007.x

    Article  Google Scholar 

  • Staudenrausch S, Kaldorf M, Renker C, Luis P, Buscot F (2005) Diversity of the ectomycorrhiza community at a uranium mining heap. Biol Fert Soils 41(6):439–446. doi:10.1007/s00374-005-0849-4

    Article  Google Scholar 

  • Tedersoo L, Kõljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots. New Phytol 159:153–165. doi:10.1046/j.0028-646x.2003.00792.x

    Article  CAS  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Koljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180(2):479–490. doi:10.1111/j.1469-8137.2008.02561.x

    Article  PubMed  CAS  Google Scholar 

  • Turnau K, Kottke I, Dexheimer J (1996) Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol Res 100(1):16–22. doi:10.1016/s0953-7562(96)80094-3

    Article  CAS  Google Scholar 

  • Vrålstad T, Myhre E, Schumacher T (2002) Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytol 155(1):131–148. doi:10.1046/j.1469-8137.2002.00444.x

    Article  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wilkinson DM, Dickinson NM (1995) Metal resistance in trees—the role of mycorrhizae. Oikos 72(2):298–300. doi:10.2307/3546233

    Article  Google Scholar 

  • Zhu LH, Wu XQ, Qu HY, Ji J, Ye JR (2010) Micropropagation of Pinus massoniana and mycorrhiza formation in vitro. Plant Cell Tiss Org 102(1):121–128. doi:10.1007/s11240-010-9711-y

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants-in-aid from the Japan Society of the Promotion of Sciences (JSPS). We sincerely thank Mr. Jun Wang, a doctoral student of Central South University, China, for assistance in field sampling. We also thank Dr. Takahide A. Ishida and Prof. Taizo Hogetsu for critical reading of this manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlan Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Nara, K., Lian, C. et al. Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in Pb–Zn mine sites of central south China. Mycorrhiza 22, 589–602 (2012). https://doi.org/10.1007/s00572-012-0436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-012-0436-0

Keywords

Navigation