Skip to main content
Log in

Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

In order to improve knowledge about the role of arbuscular mycorrhizal fungi (AMF) in the tolerance to heavy metals in ultramafic soils, the present study investigated the influence of two Glomus etunicatum isolates from New Caledonian ultramafic maquis (shrubland), on nickel tolerance of a model plant species Sorghum vulgare, and of two ultramafic endemic plant species, Alphitonia neocaledonica and Cloezia artensis. In a first step, plants were grown in a greenhouse, on sand with defined concentrations of Ni, to appreciate the effects of the two isolates on the alleviation of Ni toxicity in controlled conditions. In a second step, the influence of the AMF on A. neocaledonica and C. artensis plants grown in a New Caledonian ultramafic soil rich in extractable nickel was investigated. Ni reduced mycorrhizal colonization and sporulation of the fungal isolates, but the symbionts increased plant growth and adaptation of endemic plant species to ultramafic conditions. One of the two G. etunicatum isolates showed a stronger positive effect on plant biomass and phosphorus uptake, and a greater reduction in toxicity symptoms and Ni concentration in roots and shoots. The symbionts seemed to act as a barrier to the absorption of Ni by the plant and reduced root-to-shoot Ni translocation. Results indicate the potential of selected native AMF isolates from ultramafic areas for ecological restoration of such degraded ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahiabor DC, Hirata H (1995) Influence of growth stage on the association between some tropical legumes and two variant species of Glomus in an Andosol. Soil Sci Plant Nutr 40:481–496

    Article  Google Scholar 

  • Alexander E, Coleman R, Keeler-Wolfe T, Harrison S (2007) Serpentine geoecology of Northern North America. Geology, soils, and vegetation. Oxford University Press, New York

    Google Scholar 

  • Amir H, Ducousso M (2010) Les bactéries et les champignons du sol sur roches ultramafiques. In: L’Huillier L, Jaffré T, Wulf A (eds) Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration. IAC Ed Noumea, New Caledonia, pp 129–145

    Google Scholar 

  • Amir H, Pineau R, Violette Z (1997) Premiers résultats sur les endomycorhizes des plantes de maquis miniers de Nouvelle-Calédonie. In : Jaffré T, Reeves RD, Becquer T (eds) Écologie des milieux sur roches ultramafiques et sur sols métallifères. Edition ORSTOM, Documents Scientifiques et Techniques III2, Noumea, pp 79–85

  • Amir H, Perrier N, Rigault F, Jaffré T (2007) Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils. Plant Soil 293:23–35

    Article  CAS  Google Scholar 

  • Amir H, Jasper DA, Abbott LK (2008) Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza 19:1–6

    Article  PubMed  CAS  Google Scholar 

  • Andrade SAL, Gratao PL, Silveira APD, Schiavinato MA, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75:1363–1370

    Article  PubMed  CAS  Google Scholar 

  • Andrade SAL, Gratao PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207

    Article  CAS  Google Scholar 

  • Arriagada C, Pereira G, Garcia-Romera I, Ocampo JA (2010) Improved zinc tolerance in Eucalyptus globulus inoculated with Glomus deserticola and Trametes versicolor or Coriolopsis rigida. Soil Biol Biochem 42:118–124

    Article  CAS  Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut 147:609–614

    Article  PubMed  CAS  Google Scholar 

  • Boulet FM, Lambers H (2005) Characterisation of arbuscular mycorrhizal fungi colonization in cluster roots of Hakea verrucosa F. Muell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant Soil 269:357–367

    Article  CAS  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides, Portland

    Google Scholar 

  • Carvalho LM, Cacador I, Martins-Loucao MA (2006) Arbuscular mycorrhizal fungi enhancer root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 285:161–169

    Article  CAS  Google Scholar 

  • Chen BD, Zhu YG, Duan J, Xiao XY, Smith SE (2007) Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut 147:374–380

    Article  PubMed  CAS  Google Scholar 

  • Christie P, Li X, Chen B (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    Article  CAS  Google Scholar 

  • Doherty JH, Baoming JI, Gasper BB (2008) Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils. Environ Pollut 151:593–598

    Article  PubMed  CAS  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205

    Article  CAS  Google Scholar 

  • Hewitt EJ (1952) Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureau Technical communication, No. 22. Maidstone, Kent, UK: Commonwealth Bureau of Horticulture and Plantation Crops, East Malling

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochem 68:139–146

    Article  CAS  Google Scholar 

  • Jaffré T (1980) Étude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. Travaux et documents de l'ORSTOM 124, Noumea

  • Jaffré T (1993) The relationship between ecological diversity and floristic diversity in New Caledonia. Biodiv Lett 1:82–87

    Article  Google Scholar 

  • Jaffré T, L’Huillier L (2010) Conditions de milieu des terrains miniers. In: L’Huillier L, Jaffré T, Wulf A (eds) Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, New Caledonia, pp 33–44

    Google Scholar 

  • Joner EJ, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soils 33:351–357

    Article  CAS  Google Scholar 

  • Jourand P, Ducousso M, Loulergue-Majorel C, Hannibal L, Santoni S, Prin Y, Lebrun M (2010a) Ultramafic soils from New Caledonia structure Pisolithus albus in ecotypes. FEMS Microbiol Ecol 72:238–249

    Article  PubMed  CAS  Google Scholar 

  • Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M (2010b) Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of a host plant at toxic nickel concentrations. Tree Physiol 30:1311–1319

    Article  PubMed  CAS  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schöder WH, Hildebrandt U, Bothe H (1999) Selective element deposit in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Khan AG, Kuek C, Chauhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  PubMed  CAS  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28

    Article  PubMed  CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    Article  PubMed  CAS  Google Scholar 

  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853

    Article  PubMed  CAS  Google Scholar 

  • Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, Zhu YG (2007) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481

    Article  PubMed  CAS  Google Scholar 

  • Luçon S, Marion F, Niel JF, Pelletier B (1997) Réhabilitation des sites miniers sur roches ultramafiques en Nouvelle-Calédonie. In : Jaffré T, Reeves RD, Becquer T (eds) Écologie des milieux sur roches ultramafiques et sur sols métallifères. Edition ORSTOM, Documents Scientifiques et Techniques III2, Noumea, pp 297–303

  • Majorel C, Hannibal L, Soupe M, Carriconde F, Ducousso M, Lebrun M, Jourand P (2012) Tracking nickel-adaptive biomarkers in Pisolithus albus from New Caledonia using a transcriptomic approach. Mol Ecol 21:2208–2223

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Orlowska E, Mesjasz-Przybylowicz J, Przybylowicz W, Turnau K (2008) Nuclear microprobe studies of elemental distribution in mycorrhizal and non-mycorrhizal roots of Ni-hyperaccumulator Berkheya coddii. X-Ray Spectrom 37:129–132

    Article  CAS  Google Scholar 

  • Orlowska E, Przybylowicz W, Orlowski D, Turnau K, Mesjasz-Przybylowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Poll 159:3730–3738

    Article  CAS  Google Scholar 

  • Orlowska E, Godzik B, Turnau K (2012) Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in plantago lanceolata L. Environ poll 168:121–130

    Article  CAS  Google Scholar 

  • Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16:449–458

    Article  PubMed  Google Scholar 

  • Redon PO, Béguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago trunculata growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195

    Article  PubMed  CAS  Google Scholar 

  • Schübler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Edinburgh & Kew, UK: The Royal Botanic Garden; Munich, Germany: Botanische Staatssammlung Munich; Oregon, USA: Oregon State University. URL: http://www.amf-phylogeny.com. ISBN-13: 978–1466388048; ISBN-10: 1466388048

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis (third edition). Academic, New York

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu Rev Plant Biol 62:227–250

    Article  PubMed  CAS  Google Scholar 

  • Sudova R, Doubkova P, Vosatka M (2008) Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated substrates. Appl Soil Ecol 40:19–29

    Article  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221

    Google Scholar 

  • Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251

    CAS  Google Scholar 

  • Wu FY, Be YL, Leung HM, Ye ZH, Lin XG, Wong MH (2009) Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Appl Soil Ecol 44:213–218

    Article  Google Scholar 

  • Zhang XH, Zhu Y-G, Chen BD, Lin AJ, Smith SE, Smith FA (2005) Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr 28:2065–2077

    Article  CAS  Google Scholar 

  • Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbscular mycorrhizal colonization increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by two projects of “Agence Nationale de la Recherche Scientifique”: “ANR ECCO” and “ANR Ultrabio” and also by BioTop project CNRT “Nickel et son Environnement”. We want to thank Valérie Médevielle, Armelle Renard, Cindy Pupier, and Xavier Cuniberti for their contribution to the technical support of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Amir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amir, H., Lagrange, A., Hassaïne, N. et al. Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23, 585–595 (2013). https://doi.org/10.1007/s00572-013-0499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0499-6

Keywords

Navigation