Skip to main content
Log in

Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) live in symbiosis with most plant species and produce underground extraradical hyphal networks functional in the uptake and translocation of mineral nutrients from the soil to host plants. This work investigated whether fungal genotype can affect patterns of interconnections and structural traits of extraradical mycelium (ERM), by comparing three Glomeraceae species growing in symbiosis with five plant hosts. An isolate of Funneliformis coronatus consistently showed low ability to form interconnected ERM and self-incompatibility that represented up to 21 % of hyphal contacts. The frequency of post-fusion self-incompatible interactions, never detected before in AMF extraradical networks, was 8.9 %. In F. coronatus ERM, the percentage of hyphal contacts leading to perfect hyphal fusions was 1.2–7.7, while it ranged from 25.8–48 to 35.6–53.6 in Rhizophagus intraradices and Funneliformis mosseae, respectively. Low interconnectedness of F. coronatus ERM resulted also from a very high number of non-interacting contacts (83.2 %). Such findings show that AMF genotypes in Glomeraceae can differ significantly in anastomosis behaviour and that ERM interconnectedness is modulated by the fungal symbiont, as F. coronatus consistently formed poorly interconnected networks when growing in symbiosis with five different host plants and in the asymbiotic stage. Structural traits, such as extent, density and hyphal self-compatibility/incompatibility, may represent key factors for the differential performance of AMF, by affecting fungal absorbing surface and foraging ability and thus nutrient flow from soil to host roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angelard C, Sanders IR (2011) Effect of segregation and genetic exchange on arbuscular mycorrhizal fungi in colonization of roots. New Phytol 189:652–657

    Article  PubMed  Google Scholar 

  • Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347–357

    Article  PubMed  Google Scholar 

  • Avio L, Castaldini M, Fabiani A, Bedini S, Sbrana C, Turrini A et al (2013) Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol Biochem 67:285–94

    Article  CAS  Google Scholar 

  • Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937

    Article  CAS  PubMed  Google Scholar 

  • de la Providencia IE, de Souza FA, Fernandez F, Séjalon-Delmas N, Declerck S (2005) Arbuscular mycorrhizal fungi exhibit distinct pattern of anastomoses formation and hyphal healing mechanism between different phylogenic groups. New Phytol 165:261–271

    Article  PubMed  Google Scholar 

  • Engelmoer DJP, Kiers ET (2015) Host diversity affects the abundance of the extraradical arbuscular mycorrhizal network. New Phytol 205:1485–1491

    Article  PubMed  Google Scholar 

  • Fiorilli V, Lanfranco L, Bonfante P (2013) The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta 237:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Friese C, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Article  Google Scholar 

  • Giovannetti M, Avio L (2002) Biotechnology of arbuscular mycorrhizas. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology, vol 2, Agriculture and food production. Elsevier, Amsterdam, NL, pp 275–310

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques to measure vesicular-arbuscular mycorrhizal infection on roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal mycorrhizal networks. New Phytol 164:175–181

    Article  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C (2015) Functional significance of anastomosis in arbuscular mycorrhizal networks. In: T.R. Horton (ed) Mycorrhizal networks. Springer, Dordrecht, pp 41–67

  • Glass L, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryotic Cell 2:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Article  CAS  PubMed  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394–431

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen BL, Rosendahl S, Jakobsen I (2008) Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol 180:890–898

    Article  PubMed  Google Scholar 

  • Phillips JM, Hayman DJ (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Purin S, Morton JB (2011) In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi. Mycorrhiza 21:505–514

    Article  PubMed  Google Scholar 

  • Purin S, Morton JB (2013) Anastomosis behaviour differs between asymbiotic and symbiotic hyphae of Rhizophagus clarus. Mycologia 12:589–602

    Article  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618

    Article  Google Scholar 

  • Sbrana C, Fortuna P, Giovannetti M (2011) Plugging into the network: belowground connections between germlings and extraradical mycelium of arbuscular mycorrhizal fungi. Mycologia 103:307–316

    Article  PubMed  Google Scholar 

  • Simard SW, Durrell DM (2004) Mycorrhizal networks: a review of their extent, function and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1990) Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: effects of photon irradiance and phosphate nutrition. Aust J Plant Physiol 17:177–188

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Voets L, de la Providencia IE, Declerck S (2006) Glomeraceae and Gigasporaceae differ in their ability to form mycelium networks. New Phytol 172:185–188

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work represents part of A.P.’s PhD thesis project, which was funded by the University of Pisa. The financial support of the University of Pisa (Fondi di Ateneo) and of CNR is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Sbrana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 382 kb)

High resolution image (TIF 6532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepe, A., Giovannetti, M. & Sbrana, C. Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. Mycorrhiza 26, 325–332 (2016). https://doi.org/10.1007/s00572-015-0671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0671-2

Keywords

Navigation