Skip to main content

Advertisement

Log in

Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Orchid mycorrhizal (OrM) fungi play a crucial role in the ontogeny of orchids, yet little is known about how the structure of OrM fungal communities varies with space and environmental factors. Previous studies suggest that within orchid patches, the distance to adult orchids may affect the abundance of OrM fungi. Many orchid species grow in species-rich temperate semi-natural grasslands, the persistence of which depends on moderate physical disturbances, such as grazing and mowing. The aim of this study was to test whether the diversity, structure and composition of OrM fungal community are influenced by the orchid patches and management intensity in semi-natural grasslands. We detected putative OrM fungi from 0 to 32 m away from the patches of host orchid species (Orchis militaris and Platanthera chlorantha) in 21 semi-natural calcareous grasslands using pyrosequencing. In addition, we assessed different ecological conditions in semi-natural grasslands but primarily focused on the effect of grazing intensity on OrM fungal communities in soil. We found that investigated orchid species were mostly associated with Ceratobasidiaceae and Tulasnellaceae and, to a lesser extent, with Sebacinales. Of all the examined factors, the intensity of grazing explained the largest proportion of variation in OrM fungal as well as total fungal community composition in soil. Spatial analyses showed limited evidence for spatial clustering of OrM fungi and their dependence on host orchids. Our results indicate that habitat management can shape OrM fungal communities, and the spatial distribution of these fungi appears to be weakly structured outside the orchid patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarenkov K, Nilsson RH, Larsson K-H et al (2010) The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    Article  CAS  PubMed  Google Scholar 

  • Ba L, Ning J, Wang D, Facelli E, Facelli JM, Yang Y, Zhang L (2012) The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant Soil 352:143–156

    Article  CAS  Google Scholar 

  • Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L (2015a) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J 10:885–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahram M, Kõljalg U, Courty P, Diedhiou AG, Kjøller R, Põlme S, Ryberg M, Veldre V, Tedersoo L (2013) The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. J Ecol 101:1335–1344

    Article  Google Scholar 

  • Bahram M, Peay KG, Tedersoo L (2015b) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463

    Article  CAS  PubMed  Google Scholar 

  • Bahram M, Põlme S, Kõljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193:465–473

    Article  PubMed  Google Scholar 

  • Bai G, Bao Y, Du G, Qi Y (2013) Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem. Mycorrhiza 23:289–301

    Article  PubMed  Google Scholar 

  • Bardgett RD, Frankland JC, Whittaker JB (1993) The effects of agricultural management on the soil biota of some upland grasslands. Agric Ecosyst Environ 45:25–45

    Article  Google Scholar 

  • Bardgett RD, Jones AC, Jones DL, Kemmitt SJ, Cook R, Hobbs PJ (2001) Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biol Biochem 33:1653–1664

    Article  CAS  Google Scholar 

  • Bateman RM, Rudall PJ, Bidartondo MI, Cozzolino S, Tranchida-Lombardo V, Carine MA, Moura M (2014) Speciation via floral heterochrony and presumed mycorrhizal host switching of endemic butterfly orchids on the Azorean archipelago. Am J Bot 101:979–1001

    Article  PubMed  Google Scholar 

  • Batty AL, Dixon KW, Brundrett M, Sivasithamparam K (2001) Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytol 152:511–520

    Article  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B Biol Sci 271:1799–1806

    Article  CAS  Google Scholar 

  • Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17:3707–3716

    PubMed  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW (2012) Fast, accurate error-correction of amplicon pyrosequences using acacia. Nat Methods 9:425–426

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    Article  CAS  PubMed  Google Scholar 

  • Currah RS, Smreciu EA, Hambleton S (1990) Mycorrhizae and mycorrhizal fungi of boreal species of Platanthera and Coeloglossum (Orchidaceae). Can J Bot 68:1171–1181

    Article  Google Scholar 

  • Dearnaley JDW, Martos F, Selosse MA (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations, vol 9, 2nd edn. Springer, Berlin Heidelberg, pp. 207–230

    Chapter  Google Scholar 

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255

    Article  Google Scholar 

  • Diez JM (2007) Hierarchical patterns of symbiotic orchid germination linked to adult proximity and environmental gradients. J Ecol 95:159–170

    Article  Google Scholar 

  • Donnison LM, Griffith GS, Hedger J, Hobbs PJ, Bardgett RD (2000) Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and Wales. Soil Biol Biochem 32:253–263

    Article  CAS  Google Scholar 

  • Douhan GW, Vincenot L, Gryta H, Selosse MA (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115:569–597

    Article  PubMed  Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Eom AH, Wilson GW, Hartnett DC (2001) Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93:233–242

    Article  Google Scholar 

  • Esposito F, Jacquemyn H, Waud M, Tyteca D (2016) Mycorrhizal fungal diversity and community composition in two closely related Platanthera (Orchidaceae) species. PLoS One 11:e0164108

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 23:3150–3152

    Article  Google Scholar 

  • Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S (2011) Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98:1148–1163

    Article  PubMed  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article  Google Scholar 

  • Hao X, Jiang R, Chen T (2011) Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics 27:611–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77

    PubMed  Google Scholar 

  • Illyes Z, Halasz K, Rudnoy SZ, Ouanphanivanh N, Garay T, Bratek Z (2009) Changes in the diversity of the mycorrhizal fungi of orchids as a function of the water supply of the habitat. J Appl Bot Food Qual 83:28–36

    Google Scholar 

  • Jacquemyn H, Brys R, Cammue BPA, Honnay O, Lievens B (2011a) Mycorrhizal associations and reproductive isolation in three closely related Orchis species. Ann Bot 107:347–356

    Article  CAS  PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Honnay O, Roldan-Ruiz I, Lievens B, Wiegand T (2012a) Nonrandom spatial structuring of orchids in a hybrid zone of three Orchis species. New Phytol 193:454–464

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Lievens B, Wiegand T (2012b) Spatial variation in below-ground seed germination and divergent mycorrhizal associations correlate with spatial segregation of three co-occurring orchid species. J Ecol 100:1328–1337

    Article  Google Scholar 

  • Jacquemyn H, Brys R, Merckx VSFT, Waud M, Lievens B, Wiegand T (2014) Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytol 202:616–627

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Vandepitte K, Honnay O, Roldán-Ruiz I, Wiegand T (2007) A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytol 176:448–459

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Honnay O, Cammue BPA, Brys R, Lievens B (2010) Low specificity and nested subset structure characterize mycorrhizal associations in five closely-related species of the genus Orchis. Mol Ecol 19:4086–4095

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Merckx V, Brys R, Tyteca D, Cammue BPA, Honnay O, Lievens B (2011b) Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytol 192:518–528

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Van Mechelen C, Brys R, Honnay O (2011c) Management effects on the vegetation and soil seed bank of calcareous grasslands: an 11-year experiment. Biol Conserv 144:416–422

    Article  Google Scholar 

  • Jacquemyn H, Waud M, Lievens B, Brys R (2016) Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Annals of Botany: mcw015

  • Jersáková J, Malinová T (2007) Spatial aspects of seed dispersal and seedling recruitment in orchids. New Phytol 176:237–241

    Article  PubMed  Google Scholar 

  • Kalamees K (2004) Seenestik. In: Kukk T (ed) Pärandkooslused. Pärandkoosluste Kaitse Ühing, Tartu, pp. 136–142

    Google Scholar 

  • Kohout P, Těšitelová T, Roy M, Vohnik M, Jersakova J (2013) A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecol 6:50–64

    Article  Google Scholar 

  • Koorem K, Gazol A, Öpik M, Moora M, Saks Ü, Uibopuu A, Sõber V, Zobel M (2014) Soil nutrient content influences the abundance of soil microbes but not plant biomass at the small-scale. PLoS One 9:e91998

    Article  PubMed  PubMed Central  Google Scholar 

  • Kull T, Hutchings MJ (2006) A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol Conserv 129:31–39

    Article  Google Scholar 

  • Kull T, Tuulik T (2002) Kodumaa Käpalised. Estonian Orchid Protection Club, Tallinn

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecol 129:271–280

    Article  Google Scholar 

  • Lievens B, van Kerckhove S, Justé A, Cammue BPA, Honnay O, Jacquemyn H (2010) From extensive clone libraries to comprehensive DNA arrays for the efficient and simultaneous detection and identification of orchid mycorrhizal fungi. J Microbiol Methods 80:76–85

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L et al (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Kan H, Yang G, Zhang Y (2015) Changes in plant, soil and microbes in typical steppe from simulated grazing: explaining potential change in soil carbon. Ecol Monogr 85:269–286

    Article  Google Scholar 

  • Lopez-Sangil L, Rousk J, Wallander H, Casals P (2011) Microbial growth rate measurements reveal that land-use abandonment promotes a fungal dominance of SOM decomposition in grazed Mediterranean ecosystems. Biol Fertil Soils 47:129–138

    Article  Google Scholar 

  • Masuhara G, Katsuya K (1994) In situ and in vitro specificity between Rhizoctonia spp. & Spiranthes sinensis (Persoon) Ames. var. amoena (M. Bieberstein) Hara (Orchidaceae). New Phytol 127:711–718

    Article  Google Scholar 

  • McCormick MK, Jacquemyn H (2014) What constrains the distribution of orchid populations? New Phytol 202:392–400

    Article  Google Scholar 

  • McCormick MK, Taylor DL, Juhaszova K, Burnett RK, Whigham DF, O’Neill J (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523

    Article  PubMed  Google Scholar 

  • McCormick MK, Taylor DL, Whigham DF, Burnett RK (2016) Germination patterns in three terrestrial orchids relate to abundance of mycorrhizal fungi. J Ecol 104:744–754

    Article  CAS  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247

    Article  Google Scholar 

  • Moora M, Davison J, Öpik M, Metsis M, Saks Ü, Jairus T, Vasar M, Zobel M (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90:609–621

    Article  CAS  PubMed  Google Scholar 

  • Nemergut DR, Schmidt SK, Fukami T et al (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 773:342–356

    Article  Google Scholar 

  • Nguyen NH, Smith D, Peay K, Kennedy P (2015) Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol 205:1389–1393

  • Nurfadilah ND, Swarts KW, Dixon H, Lambers DJM (2013) Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Ann Bot 111:1233–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberwinkler F, Riess K, Bauer R, Selosse MA, Weiss M, Garnica S, Zuccaro A (2013) Enigmatic Sebacinales. Mycol Prog 12:1–27

    Article  Google Scholar 

  • Oja J, Kohout P, Tedersoo L, Kull T, Kõljalg U (2015) Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytol 205:1608–1618

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R, Simpson GL, Oksanen MJ, Suggests M (2013) Vegan: Community Ecology Package. R package version 2.0–0. http://CRAN.R-project.org/package=vegan

  • Pärtel M, Bruun H, Sammul M (2005) Biodiversity in temperate European grasslands: origin and conservation. In: Lillak R, Viiralt R, Linke A, Geherman V (eds) Integrating efficient grassland farming and biodiversity. Estonian Grassland Society, Tartu, pp. 1–14

    Google Scholar 

  • Pärtel M, Helm A (2007) Invasion of woody species into temperate grasslands: relationship with abiotic and biotic soil resource heterogeneity. J Veg Sci 18:63–70

    Article  Google Scholar 

  • Pärtel M, Kalamees R, Zobel M, Rosén E (1999) Alvar grasslands in Estonia: variation in species composition and community structure. J Veg Sci 10:561–570

    Article  Google Scholar 

  • Perkins AJ, McGee PA (1995) Distribution of the orchid mycorrhizal fungus, Rhizoctonia solani, in relation to its host, Pterostylis acuminata, in the field. Aust J Bot 43:565–575

    Article  Google Scholar 

  • Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:585–869

    Article  Google Scholar 

  • Pickles BJ, Genney DR, Anderson IC, Alexander IJ (2012) Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structured by competitive interactions. Mol Ecol 21(20):5110–5123

    Article  PubMed  Google Scholar 

  • Pickles BJ, Genney DR, Potts JM, Lennon JJ, Anderson IC, Alexander IJ (2010) Spatial and temporal ecology of Scots pine ectomycorrhizas. New Phytol 186:755–768

    Article  CAS  PubMed  Google Scholar 

  • Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376

    Article  Google Scholar 

  • Poska A, Saarse L (1999) Holocene vegetation and land-use history in the environs of Lake Kahala, northern Estonia. Veg Hist Archaeobot 8:185–197

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL http://www.R-project.org/

  • Rasmussen HN, Whigham D (1993) Seed ecology of dust seeds in situ: a new technique and its application to terrestrial orchids. Am J Bot 80:1374–1378

    Article  Google Scholar 

  • Roberts DW (2015) labdsv: ordination and multivariate analysis for ecology package. R package version 1.7–0. https://cran.r-project.org/web/packages/labdsv/

  • Roberts P (1999) Rhizoctonia-forming fungi. The Herbarium, Royal Botanic Gardens, Kew

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semmartin M, Garibaldi L, Chaneton E (2008) Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant Soil 303:177–189

    Article  CAS  Google Scholar 

  • Sharma J, Zettler LW, van Sambeek JW (2003) A survey of mycobionts of federally threatened Platanthera praeclara (Orchidaceae). Symbiosis 34:145–155

    Google Scholar 

  • Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailing hills. Am J Bot 95:156–164

    Article  PubMed  Google Scholar 

  • Su YY, Guo LD (2007) Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza 17:689–693

    Article  PubMed  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M et al (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43

    Article  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346(6213):1256688. doi:10.1126/science.1256688

    Article  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010a) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010b) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301

    Article  CAS  PubMed  Google Scholar 

  • Tešitelová T, Tešitel J, Jersáková J, Ríhová G, Selosse M-A (2012) Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. Am J Bot 99:1020–1032

    Article  PubMed  Google Scholar 

  • Van der Linde S, Alexander IJ, Anderson IC (2009) Spatial distribution of sporocarps of stipitate hydnoid fungi and their belowground mycelium. FEMS Microbiol Ecol 69:344–352

    Article  CAS  PubMed  Google Scholar 

  • Veldre V, Abarenkov K, Bahram M, Martos F, Selosse MA, Tamm H, Kõljalg U, Tedersoo L (2013) Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed form publicly available ITS sequences. Fungal Ecol 30:1–13

    Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  • Waud M, Busschaert P, Lievens B, Jacquemyn H (2016a) Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol 20:155–165

    Article  Google Scholar 

  • Waud M, Wiegand T, Brys R, Lievens B, Jacquemyn H (2016b) Nonrandom seedling establishment corresponds with distance-dependent decline in mycorrhizal abundance in two terrestrial orchids. New Phytol. doi:10.1111/nph.13894

    PubMed  Google Scholar 

  • Weiss M, Waller F, Zuccaro A, Selosse MA (2016) Sebacinales—one thousand and one interactions with land plants. New Phytol 211:20–40

    Article  PubMed  Google Scholar 

  • Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802

    Article  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30

    Article  PubMed  Google Scholar 

  • Yagame T, Orihara T, Selosse MA, Yamato M, Iwase K (2012) Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza-forming Ceratobasidiaceae fungi. New Phytol 193:178–187

    Article  CAS  PubMed  Google Scholar 

  • Zeller V, Bardgett RD, Tappeiner U (2001) Site and management effects on soil microbial properties of subalpine meadows: a study of land abandonment along a north-south gradient in the European Alps. Soil Biol Biochem 33:639–650

    Article  CAS  Google Scholar 

  • Zelmer CD, Cuthbertson L, Currah RS (1996) Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience 37:439–448

    Article  Google Scholar 

  • Zettler LW, Piskin KA (2011) Mycorrhizal fungi from protocorms, seedlings and mature plants of the eastern prairie fringed orchid, Platanthera leucophaea (Nutt.) Lindley: a comprehensive list to augment conservation. Am Midl Nat 166:29–39

    Article  Google Scholar 

  • Zi XM, Sheng CL, Goodale UM, Shao SC, Gao JY (2014) In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza 24:487–499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sten Anslan, Ants Kaasik, Milan Kotilínek, Eva Luukas, Rasmus Puusepp, Sergei Põlme and Heidi Tamm for their scientific or technical assistance, as well as Aveliina Helm, Mari Reitalu and Anu Tiitsaar for providing information about potential study sites. We also thank J. Colpaert and anonymous reviewers for constructive comments on the manuscript. This study was supported by the Estonian Science Foundation (grants 9286, PUT171, IUT20-30 and IUT21-1) and the European Union through the European Regional Development Fund by the program 3.2.0802.11-0043. P. Kohout was supported by the Academy of Sciences of the Czech Republic within the long-term research development project no. RVO 67985939 and Charles University in Prague (NPUI LO1417 MSMT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Oja.

Electronic supplementary material

Figure S1

(PDF 15 kb)

Figure S2

(PDF 393 kb)

Figure S3

(PDF 55 kb)

Figure S4

(PDF 39 kb)

Figure S5

(PDF 32 kb)

Table S1

(DOCX 26 kb)

Table S2

(DOCX 13 kb)

Table S3

(XLSX 2339 kb)

Table S4

(DOCX 14 kb)

Table S5

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oja, J., Vahtra, J., Bahram, M. et al. Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands. Mycorrhiza 27, 355–367 (2017). https://doi.org/10.1007/s00572-016-0755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0755-7

Keywords

Navigation