Skip to main content

Advertisement

Log in

Isolation, culture, characterization, and adipogenic differentiation of heifer endometrial mesenchymal stem cells

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have been isolated from various tissues of different species. The mammalian endometrium has morphological and functional modifications throughout the estrous cycle undergoing periodic proliferation and degeneration. The aim of this study was to isolate, culture, and characterize and to determine adipogenic differentiation of endometrial mesenchymal stem cells (En-MSCs) in heifers. Uteri of healthy heifers were collected from Shiraz Slaughterhouse, Iran and transferred to Stem Cell Laboratory of Stem Cell and Transgenic Technology Research Center to isolate En-MSCs from endometrial tissue samples. The tissue samples were exposed to collagenase type IA to reach the primary culture of En-MSCs. Isolated En-MSCs were sub-cultured up to passage 4. A specified number of En-MSCs were seeded into 12- and 24-well culture plates, and the number of cells was counted to evaluate the growth behavior of isolated cells and the population doubling time (PDT). RT-PCR for CD45 marker (hematopoietic stem cells) and CD73 marker (MSCs) and differentiation to adipocytes were performed for MSCs confirmation of En-MSCs of heifer. After cell culture, spindle-shape En-MSCs were visible adherent to the culture flasks. The cell count and the growth curves using 12- and 24-well culture plates showed that the PDT of En-MSCs was 37, 159.5, 52.9, and 136.3 h after seeding 2.2 × 104 and 20 × 104 (12-well) and 5 × 104 and 10 × 104 (24-well) En-MSCs, respectively. Using RT-PCR, heifer En-MSCs were negative for CD45 marker and positive for CD73 marker. Moreover, after culture of En-MSCs in differentiation medium, the cells differentiated toward adipocytes as verified by positive staining with Oil Red O staining. The morphology, growth kinetic, and differentiation of bovine En-MSCs demonstrated that these cells may be a good choice in bovine cell therapy and if necessary, they can be easily and safely administered in bovine tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ai J, Mehrabani D (2010a) Are endometrial stem cells novel tools against ischemic heart failure in women? A hypothesis. Iran Red Crescent Med J 12:73–75

    Google Scholar 

  • Ai J, Mehrabani D (2010b) The potential of human endometrial stem cells for osteoblast differentiation. Iran Red Crescent Med J 12:585–587

    Google Scholar 

  • Ai J, Noroozi Javidan A, Mehrabani D (2010) The possibility of differentiation of human endometrial stem cells into neural cells. Iran Red Crescent Med J 12:328–331

    Google Scholar 

  • Ai J, Ebrahimi S, Khoshzaban A, Jafarzadeh Kashi TS, Mehrabani D (2012) Tissue engineering using human mineralized bone xenograft and bone marrow mesenchymal stem cells allograft in healing of tibial fracture of experimental rabbit model. Iran Red Crescent Med J 14:96–103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asmani MN, Ai J, Amoabediny G, Noroozi A, Azami M, Ebrahimi-Barough S, Navaei-Nigjeh M, Ai A, Jafarabadi M (2013) Three-dimensional culture of differentiated endometrial stromal cells to oligodendrocyte progenitor cells (OPCs) in fibrin hydrogel. Cell Biol Int 37:1340–1349

    Article  CAS  PubMed  Google Scholar 

  • Bondarenko GI, Durning M, Golos TG (2012) Immunomorphological changes in the rhesus monkey endometrium and decidua during the menstrual cycle and early pregnancy. Am J Reprod Immunol 68:309–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabezas J, Lara E, Pacha P, Rojas D, Veraguas D, Saravia F, Rodríguez-Alvarez L, Castro F (2014) The endometrium of cycling cows contains populations of putative mesenchymal progenitor cells. Reprod Domest Anim 49:550–559

    Article  CAS  PubMed  Google Scholar 

  • Cervelló I, Martínez-Conejero JA, Horcajadas JA, Pellicer A, Simón C (2007) Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum Reprod 22:45–51

    Article  PubMed  Google Scholar 

  • Chan RWS, Schwab KE, Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 70:1738–1750

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov R, Timeva T, Kyurkchiev D, Stamenova M, Shterev A, Kostova P, Zlatkov V, Kehayov I, Kyurkchiev S (2008) Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction 135:551–558

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le BK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Duke CM, Taylor HS (2013) Stem cells and the reproductive system: historical perspective and future directions. Maturitas 76:284–289

    Article  CAS  PubMed  Google Scholar 

  • Eckfeldt CE, Mendenhall EM, Verfaillie CM (2005) The molecular repertoire of the ‘almighty’ stem cell. Nat Rev Mol Cell Biol 6:726–737

    Article  CAS  PubMed  Google Scholar 

  • Eslaminejad MB, Vahabi S, Shariati M, Nazarian H (2010) In vitro growth and characterization of stem cells from human dental pulp of deciduous versus permanent teeth. J Dent (Tehran) 7:185–195

    Google Scholar 

  • Fortier MA, Guilbault LA, Grasso F (1988) Specific properties of epithelial and stromal cells from the endometrium of cows. J Reprod Fertil 83:239–248

    Article  CAS  PubMed  Google Scholar 

  • Gargett CE (2007) Uterine stem cells: what is the evidence? Hum Reprod Update 13:87–101

    Article  CAS  PubMed  Google Scholar 

  • Gargett CE, Masuda H (2010) Adult stem cells in the endometrium. Mol Hum Reprod 16:818–834

    Article  CAS  PubMed  Google Scholar 

  • Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 80:1136–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gargett CE, Nguyen HP, Ye L (2012) Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord 13:235–251

    Article  CAS  PubMed  Google Scholar 

  • Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R (2014) Tissue engineered scaffolds in regenerative medicine. World J Plast Surg 3:3–7

    PubMed Central  PubMed  Google Scholar 

  • Johnson GA, Burghardt RC, Newton GR, Bazer FW, Spencer TE (1999) Development and characterization of immortalized ovine endometrial cell lines. Biol Reprod 61:1324–1330

    Article  CAS  PubMed  Google Scholar 

  • Khademi F, Soleimani M, Verdi J, Tavangar SM, Sadroddiny E, Masumi M, Ai J (2014) Human endometrial stem cells differentiation into functional hepatocyte-like cells. Cell Biol Int 38:825–834

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Huang Y, Zhang J, Qin W, Chi H, Chen J, Yu Z, Chen C (2014) Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev 23:1548–1557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehrabani D, Mahboobi R, Dianatpour M, Zare Sh, Tamadon A, Hosseini SE (2014) Establishment, culture and characterization of Guinea pig fetal fibroblast cells. Vet Med Int 510328:5

  • Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, Thébaud B, Riordan NH (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5:57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Schwab KE, Gargett CE (2007) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod 22(2903):2911

    Google Scholar 

  • Schwab KE, Chan RWS, Gargett CE (2005) Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril 84:1124–1130

    Article  CAS  PubMed  Google Scholar 

  • Shoae-Hassani A, Sharif S, Seifalian AM, Mortazavi-Tabatabaei SA, Rezaie S, Verdi J (2013) Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women. BJU Int 112:854–863

    Article  CAS  PubMed  Google Scholar 

  • Tabatabaei FS, Dastjerdi MV, Jazayeri M, Haghighipour N, Dastjerdie EV, Bordbar M (2013) Comparison of osteogenic medium and uniaxial strain on differentiation of endometrial stem cells. Dent Res J (Isfahan) 10:190–196

    Article  Google Scholar 

  • Tawonsawatruk T, Spadaccino A, Murray IR, Peault B, Simpson HA (2012) Growth kinetics of rat mesenchymal stem cells from 3 potential sources: bone marrow, periosteum and adipose tissue. J Med Assoc Thai 10:S189–S197

    Google Scholar 

  • Tsuji S, Yoshimoto M, Takahashi K, Noda Y, Nakahata T, Heike T (2008) Side population cells contribute to the genesis of human endometrium. Fertil Steril 90:1528–1537

    Article  PubMed  Google Scholar 

  • Ulrich D, Edwards SL, Su K, Tan KS, White JF, Ramshaw JA, Lo C, Rosamilia A, Werkmeister JA, Gargett CE (2014) Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng 20:785–798

    CAS  Google Scholar 

  • Yang XY, Wang W, Li X (2014) In vitro hepatic differentiation of human endometrial stromal stem cells. In Vitro Cell Dev Biol Anim 50:162–170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the kind financial support of Shiraz University and the SCTRC for laboratory cooperation.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farhad Rahmanifar or Maryam Mellinejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabani, D., Rahmanifar, F., Mellinejad, M. et al. Isolation, culture, characterization, and adipogenic differentiation of heifer endometrial mesenchymal stem cells. Comp Clin Pathol 24, 1159–1164 (2015). https://doi.org/10.1007/s00580-014-2053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-014-2053-0

Keywords

Navigation