Skip to main content
Log in

Quantitative ultrasound measurements of the calcaneus in the prediction of lumbar spine degeneration

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

A cross-sectional study was conducted to evaluate the possible use of a low-cost radiation-free technique in the prediction of degenerative changes in the lumbar spine. Although an inverse correlation between osteoporosis and degenerative changes in the lumbar spine has been reported, no previous studies have asked whether there is a correlation between calcaneal quantitative ultrasound results and degenerative findings in the lumbar spine. In 117 patients with low back pain or pain in the lower limb, ultrasonographic parameters (speed of sound, broadband ultrasound attenuation, stiffness) of the calcaneus were correlated with evidence of degenerative changes and stenosis on magnetic resonance scans of the lumbar spine. Linear and logistic regression, as well as receiver operator characteristic curve analyses, were used to evaluate the correlation. Lumbar spine stenosis was associated with elevated calcaneal ultrasonographic parameters, particularly speed of sound. For the identification of a narrowing of the lumbar spinal canal below 100 mm2 of dural sac cross-sectional area, speed of sound showed 89% sensitivity and 75% specificity in males older than 60 years. In male patients, we also found a significant positive correlation between ultrasonographic parameters and scores on a degenerative scale that primarily reflects intervertebral disc degeneration (P=0.019 for speed of sound; P=0.039 for stiffness). In conclusion, calcaneal quantitative ultrasound is frequently used in elderly patients with low back pain as a diagnostic test for osteoporosis. The incidental finding of high values on ultrasonographic parameters in these subjects, particularly in males, is highly correlated with lumbar spine degeneration and stenosis, and can help to identify those symptomatic patients needing more extensive diagnostic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amundsen T, Weber H, Lilleas F, Nordal HJ, Abdelnoor M, Magnaes B (1995) Lumbar spinal stenosis. Clinical and radiologic features. Spine 20:1178–1186

    CAS  PubMed  Google Scholar 

  2. Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW (1990) Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. J Bone Joint Surg Am 72:403–408

    CAS  PubMed  Google Scholar 

  3. Boden SD (1996) The use of radiographic imaging studies in the evaluation of patients who have degenerative disorders of the lumbar spine. J Bone Joint Surg Am 78:114–124

    CAS  PubMed  Google Scholar 

  4. Bolender NF, Schönström NSR, Spengler DM (1985) Role of computed tomography and myelography in the diagnosis of central spinal stenosis. J Bone Joint Surg Am 67:240–246

    CAS  PubMed  Google Scholar 

  5. Cepollaro C, Agnusdei D, Gonnelli S, Martini G, Pondrelli C, Borracelli D, Palmieri R, Parisi G, Gennari C (1995) Ultrasonographic assessment of bone in normal Italian males and females. Br J Radiol 68:910–914

    CAS  PubMed  Google Scholar 

  6. Cepollaro C, Gonnelli S, Pondrelli C, Martini S, Montagnani A, Rossi S, Gennari L, Gennari C (1997) The combined use of ultrasound and densitometry in the prediction of vertebral fracture. Br J Radiol 70:691–696

    CAS  PubMed  Google Scholar 

  7. Day LY (1998) The relationship between osteoarthritis and osteoporosis in the spine. Clin Rheumatol 17:44–46

    PubMed  Google Scholar 

  8. Dequeker J, Mokassa L, Aerssens J (1995) Bone density and osteoarthritis. J Rheumatol 22:98S–100S

    Google Scholar 

  9. Deyo RA (1994) Magnetic resonance imaging of the lumbar spine. Terrific test or tar baby? N Engl J Med 331:115–116

    Article  CAS  PubMed  Google Scholar 

  10. Drozdzowska B, Pluskiewicz W, Przedlacki J (2002) Prediction of the biomechanical properties of cancellous bone using ultrasound velocity and bone mineral density. An in vitro study. Med Sci Monit 8:MT15–20

    PubMed  Google Scholar 

  11. Fairbank JCT, Couper J, Davies JB, O’Brien JP (1980) The Oswestry low back pain disability questionnaire. Physiotherapy 66:271–273

    CAS  PubMed  Google Scholar 

  12. Frymoyer JW, Newberg A, Pope MH, Wilder DG, Clements J, MacPherson B (1984) Spine radiographs in patients with low back pain. An epidemiological study in men. J Bone Joint Surg Am 66:1048–1055

    CAS  PubMed  Google Scholar 

  13. Greenspan SL, Bouxsein ML, Melton ME, Kolodny AH, Clair JH, Delucca PT, Stek M Jr, Faulkner KG, Orwoll ES (1997) Precision and discriminatory ability of calcaneal bone assessment technologies. J Bone Miner Res 12:1303–1313

    CAS  PubMed  Google Scholar 

  14. Hamanishi C, Matukura N, Fujita M, Tomihara M, Tanaka S (1994) Cross-sectional area of the stenotic lumbar dural tube measured from the transverse views of magnetic resonance imaging. J Spinal Disord 7:388–393

    PubMed  Google Scholar 

  15. Harada A, Okuizumi H, Miyagi N, Genda E (1998) Correlation between bone mineral density and intervertebral disc degeneration. Spine 23:857–862

    Article  CAS  PubMed  Google Scholar 

  16. Hart DJ, Mootoosamy I, Doyle DV, Spector TD (1994) The relationship between osteoarthritis and osteoporosis in the general population: the Chingford study. Ann Rheum Dis 53:158–162

    CAS  PubMed  Google Scholar 

  17. Herno A, Partanen K, Talaslahti T, Kaukanen E, Turunen V, Suomalainen O, Airaksinen O (1999) Long-term clinical and magnetic resonance imaging follow-up assessment of patients with lumbar spinal stenosis after laminectomy. Spine 24:1533–1537

    Article  CAS  PubMed  Google Scholar 

  18. Hodgskinson R, Njeh CF, Currey JD, Langton CM (1997) The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro. Bone 21:183–190

    Article  CAS  PubMed  Google Scholar 

  19. Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331:69–73

    CAS  PubMed  Google Scholar 

  20. Johnsson KE, Rosen I, Uden A (1992) The natural course of lumbar spinal stenosis. Clin Orthop 279:83–86

    Google Scholar 

  21. Jönsson B, Annertz M, Sjöberg C, Strömqvist B (1997) A prospective and consecutive study of surgically treated lumbar spinal stenosis. Part II. Five-year follow-up by an independent observer. Spine 22:2938–2944

    Article  CAS  PubMed  Google Scholar 

  22. Kang C, Speller R (1998) Comparison of ultrasound and dual energy X-ray absorptiometry measurements in the calcaneus. Br J Radiol 71:861–867

    CAS  PubMed  Google Scholar 

  23. Katz JN, Dalgas M, Stucki G, Katz NP, Bayley J, Fossel AH, Chang LC, Lipson SJ (1995) Degenerative lumbar spinal stenosis. Diagnostic value of the history and physical examination. Arthritis Rheum 38:1236–1241

    CAS  PubMed  Google Scholar 

  24. Keller TS, Ziv I, Moeljanto E, Spengler DM (1993) Interdependence of lumbar disc and subdiscal bone properties: a report of the normal and degenerated spine. J Spinal Disord 6:106–113

    CAS  PubMed  Google Scholar 

  25. Langton CM, Langton DK (2000) Comparison of bone mineral density and quantitative ultrasound of the calcaneus: site-matched correlation and discrimination of axial BMD status. Br J Radiol 73:31–35

    CAS  PubMed  Google Scholar 

  26. Mariconda M, Zanforlino G, Celestino GA, Brancaleone S, Fava R, Milano C (2000) Factors influencing the outcome of degenerative lumbar spinal stenosis. J Spinal Disord 13:131–137

    Article  CAS  PubMed  Google Scholar 

  27. Peel NFA, Barrington NA, Blumsohn A, Colwell A, Hannon R, Eastell R (1995) Bone mineral density and bone turnover in spinal osteoarthrosis. Ann Rheum Dis 54:867–871

    CAS  PubMed  Google Scholar 

  28. Peterson CK, Bolton JE, Wood AR (2000) A cross-sectional study correlating lumbar spine degeneration with disability and pain. Spine 25:218–223

    Article  CAS  PubMed  Google Scholar 

  29. Postacchini F (1989) Lumbar spinal stenosis. Springer, Vienna

  30. Schönström NSR, Bolender NF, Spengler DM (1985) The pathomorphology of spinal stenosis as seen on CT scans of the lumbar spine. Spine 10:806–811

    PubMed  Google Scholar 

  31. Van Daele PLA, Burger H, Algra D, Hofman A, Grobbee DE, Birkenhäger JC, Pols HAP (1994) Age-associated changes in ultrasound measurements of the calcaneus in men and women: the Rotterdam study. J Bone Miner Res 9:1751–1757

    PubMed  Google Scholar 

  32. Yamaga A, Michiyoshi T, Minaguchi H, Sato K (1996) Changes in bone mass as determined by ultrasound and biochemical markers of bone turnover during pregnancy and puerperium: a longitudinal study. J Clin Endocrinol Metab 81:752–756

    Google Scholar 

  33. Yamazaki K, Kushida K, Ohmura M, Sano M, Inoue T (1994) Ultrasound bone densitometry of the os calcis in Japanese women. Osteoporos Int 4:220–225

    CAS  PubMed  Google Scholar 

  34. Ziran BH, Pineda S, Pokharna H, Esteki A, Mansour JM, Moskowitz RW (1994) Biomechanical, radiologic, and histopathologic correlations in the pathogenesis of experimental intervertebral disc disease. Spine 19:1259–1263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mariconda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariconda, M., Lotti, G., Fava, R. et al. Quantitative ultrasound measurements of the calcaneus in the prediction of lumbar spine degeneration. Eur Spine J 13, 346–353 (2004). https://doi.org/10.1007/s00586-003-0646-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-003-0646-4

Keywords

Navigation