Skip to main content

Advertisement

Log in

Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The disruption of the extracellular disc matrix is a major hallmark of disc degeneration. This has previously been shown to be associated with an up-regulation of major matrix metalloproteinase (MMP) expression and activity. However, until now hardly any data are available for MMP/TIMP regulation and thereby no concept exists as to which MMP/TIMP plays a major role in disc degeneration. The objective of this study was, therefore, to identify and quantify the putative up-regulation of MMPs/TIMPs on the mRNA and protein level and their activity in disc material in relation to clinical data and histological evidence for disc degeneration. A quantitative molecular analysis of the mRNA expression levels for the MMPs (MMPs-1, -2, -3, -7, -8, -9, -13) and the MMP inhibitors (TIMPs-1 and -2) was performed on 37 disc specimens obtained from symptomatic disc herniation or degeneration. In addition, disc specimens from patients without disc degeneration/herniation (=controls) were analyzed. Expression of MMPs-1, -2, -3, -7, -8, -9, -13 and TIMPs-1, -2 was analyzed using quantitative RT-PCR, normalized to the expression level of a house keeping gene (GAPDH). Gene expression patterns were correlated with MMP activity (in situ zymography), protein expression patterns (immunohistochemistry), degeneration score (routine histology) and clinical data. MMP-3 mRNA levels were consistently and substantially up-regulated in samples with histological evidence for disc degeneration. A similar but less pronounced up-regulation was observed for MMP-8. This up-regulation was paralleled by the expression of TIMP-1 and to a lesser extent TIMP-2. In general, these findings could be confirmed with regard to protein expression and enzyme activity. This study provides data on the gene and protein level, which highlights the key role of MMP-3 in the degenerative cascade leading to symptomatic disc degeneration and herniation. Control of the proteolytic activity of MMP-3 may, therefore, come into the focus when aiming to develop new treatment options for early disc degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson DG, Izzo MW, Hall DJ, Vaccaro AR, Hilibrand A, Arnold W, Tuan RS, Albert TJ (2002) Comparative gene expression profiling of normal and degenerative discs: analysis of a rabbit annular laceration model. Spine 27:1291–1296. doi:10.1097/00007632-200206150-00009

    Article  PubMed  Google Scholar 

  2. Bachmeier BE, Albini A, Vene R, Benelli R, Noonan D, Weigert C, Weiler C, Lichtinghagen R, Jochum M, Nerlich AG (2005) Cell density-dependent regulation of matrix metalloproteinase and TIMP expression in differently tumorigenic breast cancer cell lines. Exp Cell Res 305:83–98. doi:10.1016/j.yexcr.2004.12.019

    Article  CAS  PubMed  Google Scholar 

  3. Bachmeier BE, Iancu CM, Jochum M, Nerlich AG (2005) Matrix metalloproteinases in cancer: comparison of known and novel aspects of their inhibition as a therapeutic approach. Expert Rev Anticancer Ther 5:149–163. doi:10.1586/14737140.5.1.149

    Article  CAS  PubMed  Google Scholar 

  4. Bertram H, Steck E, Zimmerman G, Chen B, Carstens C, Nerlich A, Richter W (2006) Accelerated intervertebral disc degeneration in scoliosis versus physiological ageing develops against a background of enhanced anabolic gene expression. Biochem Biophys Res Commun 342:963–972. doi:10.1016/j.bbrc.2006.02.048

    Article  CAS  PubMed  Google Scholar 

  5. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 27:2631–2644. doi:10.1097/00007632-200212010-00002

    Article  PubMed  Google Scholar 

  6. Crean JK, Roberts S, Jaffray DC, Eisenstein SM, Duance VC (1997) Matrix metalloproteinases in the human intervertebral disc: role in disc degeneration and scoliosis. Spine 22:2877–2884. doi:10.1097/00007632-199712150-00010

    Article  CAS  PubMed  Google Scholar 

  7. Cs-Szabo G, Ragasa-San Juan D, Turumella V, Masuda K, Thonar EJ, An HS (2002) Changes in mRNA and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration. Spine 27:2212–2219. doi:10.1097/00007632-200210150-00006

    Article  PubMed  Google Scholar 

  8. Goupille P, Jayson MI, Valat JP, Freemont AJ (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 23:1612–1626. doi:10.1097/00007632-199807150-00021

    Article  CAS  PubMed  Google Scholar 

  9. Gruber HE, Ingram JA, Hanley EN Jr (2005) Immunolocalization of MMP-19 in the human intervertebral disc: implications for disc aging and degeneration. Biotech Histochem 80:157–162. doi:10.1080/10520290500387607

    Article  CAS  PubMed  Google Scholar 

  10. Guehring T, Omlor GW, Lorenz H, Bertram H, Steck E, Richter W, Carstens C, Kroeber M (2005) Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration—an in vivo animal study. Spine 30:2510–2515. doi:10.1097/01.brs.0000186591.17114.e9

    Article  PubMed  Google Scholar 

  11. Gunja-Smith Z, Woessner JFJ (1993) Activation of cartilage stromelysin-1 at acid pH and its relation to enzyme Ph optimum and osteoarthritis. Agents Actions 40:228–231. doi:10.1007/BF01984067

    Article  CAS  PubMed  Google Scholar 

  12. Haro H, Crawford HC, Fingleton B, MacDougall JR, Shinomiya K, Spengler DM, Matrisian LM (2000) Matrix metalloproteinase-3-dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. J Clin Invest 105:133–141. doi:10.1172/JCI7090

    Article  CAS  PubMed  Google Scholar 

  13. Haro H, Crawford HC, Fingleton B, Shinomiya K, Spengler DM, Matrisian LM (2000) Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption. J Clin Invest 105:143–150. doi:10.1172/JCI7091

    Article  CAS  PubMed  Google Scholar 

  14. Haro H, Komori H, Kato T, Hara Y, Tagawa M, Shinomiya K, Spengler DM (2005) Experimental studies on the effects of recombinant human matrix metalloproteinases on herniated disc tissues—how to facilitate the natural resorption process of herniated discs. J Orthop Res 23:412–419. doi:10.1016/j.orthres.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  15. Kang JD, Stefanovic-Racic M, McIntyre LA, Georgescu HI, Evans CH (1997) Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine 22:1065–1073. doi:10.1097/00007632-199705150-00003

    Article  CAS  PubMed  Google Scholar 

  16. Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204:47–54. doi:10.1002/path.1608

    Article  CAS  PubMed  Google Scholar 

  17. MacLean JJ, Lee CR, Alini M, Iatridis JC (2005) The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc. J Orthop Res 23:1120–1127. doi:10.1016/j.orthres.2005.01.020

    Article  CAS  PubMed  Google Scholar 

  18. Matsui Y, Maeda M, Nakagami W, Iwata H (1998) The involvement of matrix metalloproteinases and inflammation in lumbar disc herniation. Spine 23:863–868. doi:10.1097/00007632-199804150-00005 (discussion 868–869)

    Article  CAS  PubMed  Google Scholar 

  19. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573. doi:10.1016/j.cardiores.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  20. Nakada M, Nakamura H, Ikeda E, Fujimoto N, Yamashita J, Sato H, Seiki M, Okada Y (1999) Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am J Pathol 154:417–428

    CAS  PubMed  Google Scholar 

  21. Nakamura H, Ueno H, Yamashita K, Shimada T, Yamamoto E, Noguchi M, Fujimoto N, Sato H, Seiki M, Okada Y (1999) Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res 59:467–473

    CAS  PubMed  Google Scholar 

  22. Nemoto O, Yamagishi M, Yamada H, Kikuchi T, Takaishi H (1997) Matrix metalloproteinase-3 production by human degenerated intervertebral disc. J Spinal Disord 10:493–498. doi:10.1097/00002517-199712000-00006

    Article  CAS  PubMed  Google Scholar 

  23. Nerlich AG, Bachmeier BE, Boos N (2004) Expression of fibronectin and TGF-β1 mRNA and protein suggest altered regulation of extracellular matrix in degenerated disc tissue. Eur Spine J 14:17–26

    Article  PubMed  Google Scholar 

  24. Nerlich AG, Schleicher E, Boos N (1997) 1997 Volvo Award in basic science. Immunohistochemical markers of age-related changes in the human lumbar intervertebral disc. Spine 22:2781–2795. doi:10.1097/00007632-199712150-00001

    Article  CAS  PubMed  Google Scholar 

  25. Nerlich AG, Weiler C, Zipperer J, Narozny M, Boos N (2002) Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs. Spine 27:2484–2490. doi:10.1097/00007632-200211150-00012

    Article  PubMed  Google Scholar 

  26. Ohashi K, Nemoto T, Nakamura K, Nemori R (2000) Increased expression of matrix metalloproteinase 7 and 9 and membrane type 1-matrix metalloproteinase in esophageal squamous cell carcinomas. Cancer 88:2201–2209. doi:10.1002/(SICI)1097-0142(20000515)88:10<2201::AID-CNCR2>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  27. Okada Y, Morodomi T, Enghild JJ, Suzuki K, Yasui A, Nakanishi I, Salvesen G, Nagase H (1990) Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem 194:721–730. doi:10.1111/j.1432-1033.1990.tb19462.x

    Article  CAS  PubMed  Google Scholar 

  28. Omlor GW, Lorenz H, Engelleiter K, Richter W, Carstens C, Kroeber MW, Guehring T (2006) Changes in gene expression and protein distribution at different stages of mechanically induced disc degeneration—an in vivo study on the New Zealand white rabbit. J Orthop Res 24:385–392. doi:10.1002/jor.20055

    Article  CAS  PubMed  Google Scholar 

  29. Pockert AJ, Richardson SM, Le Maitre CL, Lyon M, Deakin JA, Buttle DJ, Freemont AJ, Hoyland JA (2009) Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum 60:482–491. doi:10.1002/art.24291

    Article  CAS  PubMed  Google Scholar 

  30. Rannou F, Lee TS, Zhou RH, Chin J, Lotz JC, Mayoux-Benhamou MA, Barbet JP, Chevrot A, Shyy JY (2004) Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol 164:915–924

    CAS  PubMed  Google Scholar 

  31. Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 25:3005–3013. doi:10.1097/00007632-200012010-00007

    Article  CAS  PubMed  Google Scholar 

  32. Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):10–14. doi:10.2106/JBJS.F.00019

    Article  PubMed  Google Scholar 

  33. Sobajima S, Shimer AL, Chadderdon RC, Kompel JF, Kim JS, Gilbertson LG, Kang JD (2005) Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J 5:14–23. doi:10.1016/j.spinee.2004.05.251

    Article  PubMed  Google Scholar 

  34. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839. doi:10.1161/01.RES.0000070112.80711.3D

    Article  CAS  PubMed  Google Scholar 

  35. Weiler C, Nerlich AG, Bachmeier BE, Boos N (2005) Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls. Spine 30:44–53. doi:10.1097/01.brs.0000174529.07959.c0 (discussion 54)

    Article  PubMed  Google Scholar 

  36. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) Expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320. doi:10.1007/s00586-002-0472-0

    Article  CAS  PubMed  Google Scholar 

  37. Wenger KH, Woods JA, Holecek A, Eckstein EC, Robertson JT, Hasty KA (2005) Matrix remodeling expression in anulus cells subjected to increased compressive load. Spine 30:1122–1126. doi:10.1097/01.brs.0000162395.56424.53

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the SynOs Stiftung für Orthopädische Chirurgie, Münsingen, Switzerland (Grant no. 1028-01) and the AOSPINE Switzerland SRN 02/103 and AOSBRC-07-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Boos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmeier, B.E., Nerlich, A., Mittermaier, N. et al. Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur Spine J 18, 1573–1586 (2009). https://doi.org/10.1007/s00586-009-1031-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1031-8

Keywords

Navigation