Skip to main content
Log in

Effect of zoledronic acid on lumbar spinal fusion in osteoporotic patients

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of zoledronic acid (ZA) on lumbar spinal fusion in patients with osteoporosis.

Methods

This retrospective study includes 94 osteoporotic patients suffering from lumbar degenerative diseases or lumbar fracture who underwent lumbar spinal fusion in our institution from January 2013 to August 2014. They were divided into ZA group and control group according to whether the patient received ZA infusion or not. The patients in ZA group were given 5 mg intravenous ZA at the 3rd–5th days after operation. All patients took daily oral supplement of 600 mg calcium carbonate and 800 IU vitamin D during the follow-up after operation. The Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), and Short Form 36 (SF-36) scores were recorded preoperatively and post-operatively to evaluate the clinic outcomes; the spinal fusion was assessed by X-ray or CT Scan.

Results

64 patients finished the final follow-up, including 30 patients in ZA group and 34 patients in control group. No significant difference was observed in gender, age, and preoperative BMI VAS, ODI, and SF-36 scores between the two groups (P > 0.05). The post-operative VAS and ODI scores decreased rapidly at 3 and 6 months, but rose back slightly at 12 and 24 months in both groups. On the contrary, post-operative SF-36 scores increased rapidly at 3 and 6 months, while fell back slightly at 12 and 24 months, with a statistically significant difference between the two groups at 12 months, but not at 3 and 6 month post-operation. The spinal fusion rate in ZA group was 90% at 6 months, 92% at 12 months, while it was 75% at 6 months, 92.86% at 12 months in control group, significantly different between the two groups at 12 months, but not at 6 months. In the whole follow-up period, adjacent vertebral compressing fracture occurred in five patients in control group, none in ZA group. No pedicle screw loosening was observed in ZA group, with six in control group.

Conclusions

Zoledronic acid accelerates spinal fusion, shortens the time of fusion without changing fusion rate, and also decreases the risk of adjacent vertebral compressing fracture and the rate of pedicle screw loosening, resulting in the improvement of clinical outcomes and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. The Branch of Osteoporosis and Bone Mineral Disease of Chinese Medical Association (2011) Guidelines for the diagnosis and treatment of primary osteoporosis. Chin J Osteoporos Bone Miner Res 4(1):2–17. doi:10.3969/j.issn.1674-2591.2011.01.002

    Google Scholar 

  2. Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS, Cho YE (2007) Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporos Int 18(9):1219–1224. doi:10.1007/s00198-007-0370-8

    Article  CAS  PubMed  Google Scholar 

  3. Epstein S (2006) Update of current therapeutic options for the treatment of postmenopausal osteoporosis. Clin Ther 28(2):151–173. doi:10.1016/j.clinthera.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  4. Zhang ZH, Liu ZH, Li N et al (2014) Expert consensus on the diagnosis of osteoporosis in Chinese population. Chin J Osteoporos 09:1007–1010

    Google Scholar 

  5. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group (1994) World Health Organization technical report series 843:1–129

  6. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–1822. doi:10.1056/NEJMoa067312

    Article  CAS  PubMed  Google Scholar 

  7. Santos ER, Goss DG, Morcom RK, Fraser RD (2003) Radiologic assessment of interbody fusion using carbon fiber cages. Spine (Phila Pa 1976) 28(10):997–1001. doi:10.1097/01.brs.0000061988.93175.74

    Google Scholar 

  8. Lenke LG, Bridwell KH, Bullis D, Betz RR, Baldus C, Schoenecker PL (1992) Results of in situ fusion for isthmic spondylolisthesis. J Spinal Disord 5(4):433–442

    Article  CAS  PubMed  Google Scholar 

  9. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38(5):617–627. doi:10.1016/j.bone.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  10. Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, Ebetino FH, Rogers MJ (2001) Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296(2):235–242

    CAS  PubMed  Google Scholar 

  11. Chen F, Dai Z, Kang Y, Lv G, Keller ET, Jiang Y (2016) Effects of zoledronic acid on bone fusion in osteoporotic patients after lumbar fusion. Osteoporos Int 27(4):1469–1476

    Article  CAS  PubMed  Google Scholar 

  12. Bransford R, Goergens E, Briody J, Amanat N, Cree A, Little D (2007) Effect of zoledronic acid in an L6–L7 rabbit spine fusion model. Eur Spine J 16(4):557–562. doi:10.1007/s00586-006-0212-y

    Article  PubMed  Google Scholar 

  13. Little DG, McDonald M, Bransford R, Godfrey CB, Amanat N (2005) Manipulation of the anabolic and catabolic responses with OP-1 and zoledronic acid in a rat critical defect model. J Bone Miner Res 20(11):2044–2052. doi:10.1359/jbmr.050712

    Article  CAS  PubMed  Google Scholar 

  14. Pataki A, Muller K, Green JR, Ma YF, Li QN, Jee WS (1997) Effects of short-term treatment with the bisphosphonates zoledronate and pamidronate on rat bone: a comparative histomorphometric study on the cancellous bone formed before, during, and after treatment. Anat Rec 249(4):458–468

    Article  CAS  PubMed  Google Scholar 

  15. Yalcin N, Ozturk A, Ozkan Y, Celimli N, Ozocak E, Erdogan A, Sahin N, Ilgezdi S (2011) The effects of zoledronic acid and hyperbaric oxygen on posterior lumbar fusion in a rabbit model. J Bone Jt Surg Br 93(6):793–800. doi:10.1302/0301-620x.93b6.24257

    Article  CAS  Google Scholar 

  16. Xue Q, Li H, Zou X, Bunger M, Egund N, Lind M, Christensen FB, Bunger C (2005) The influence of alendronate treatment and bone graft volume on posterior lateral spine fusion in a porcine model. Spine (Phila Pa 1976) 30(10):1116–1121

    Article  Google Scholar 

  17. Xue Q, Li H, Zou X, Bunger M, Egund N, Lind M, Christensen FB, Bunger C (2005) Healing properties of allograft from alendronate-treated animal in lumbar spine interbody cage fusion. Eur Spine J 14(3):222–226. doi:10.1007/s00586-004-0771-8

    Article  PubMed  Google Scholar 

  18. Xue Q, Li H, Zou X, Dalstra M, Lind M, Christensen FB, Bünger C (2010) Alendronate treatment improves bone–pedicle screw interface fixation in posterior lateral spine fusion: an experimental study in a porcine model. Int Orthop 34(3):447–451. doi:10.1007/s00264-009-0759-4

    Article  PubMed  Google Scholar 

  19. Takahata M, Ito M, Abe Y, Abumi K, Minami A (2008) The effect of anti-resorptive therapies on bone graft healing in an ovariectomized rat spinal arthrodesis model. Bone 43(6):1057–1066. doi:10.1016/j.bone.2008.08.124

    Article  CAS  PubMed  Google Scholar 

  20. Nakao S, Minamide A, Kawakami M, Boden SD, Yoshida M (2011) The influence of alendronate on spine fusion in an osteoporotic animal model. Spine (Phila Pa 1976) 36(18):1446–1452. doi:10.1097/BRS.0b013e3181f49c47

    Article  Google Scholar 

  21. Nagahama K, Kanayama M, Togawa D, Hashimoto T, Minami A (2011) Does alendronate disturb the healing process of posterior lumbar interbody fusion? A prospective randomized trial. J Neurosurg Spine 14(4):500–507

    Article  PubMed  Google Scholar 

  22. Gibson S, McLeod I, Wardlaw D, Urbaniak S (2002) Allograft versus autograft in instrumented posterolateral lumbar spinal fusion: a randomized control trial. Spine (Phila Pa 1976) 27(15):1599–1603

    Article  Google Scholar 

  23. Tian CQ, Li ZY, Zhou WY, Zeng TH, Sun SQ, Li BX (2009) Application of small freeze-drying allogeneic bone plots mixed with autologous bone graft in spinal fusion. Chin J Repar Reconstr Surg 05:517–519

    Google Scholar 

  24. Theologis AA, Tabaraee E, Lin T, Lubicky J, Diab M (2015) Type of bone graft or substitute does not affect outcome of spine fusion with instrumentation for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 40(17):1345–1351. doi:10.1097/brs.0000000000001002

    Article  Google Scholar 

  25. Park YS, Kim HS, Baek SW, Kong DY, Ryu JA (2013) The effect of zoledronic acid on the volume of the fusion-mass in lumbar spinal fusion. Clin Orthop Surg 5(4):292–297

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK (2001) Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation. J Orthop Res 19(5):977–984. doi:10.1016/s0736-0266(01)00010-9

    Article  CAS  PubMed  Google Scholar 

  27. Kang J, An H, Hilibrand A, Yoon ST, Kavanagh E, Boden S (2012) Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine (Phila Pa 1976) 37(12):1083–1091. doi:10.1097/BRS.0b013e31823ed817

    Article  Google Scholar 

  28. Stevenson S, Li XQ, Davy DT, Klein L, Goldberg VM (1997) Critical biological determinants of incorporation of non-vascularized cortical bone grafts Quantification of a complex process and structure. J Bone Jt Surg Am 79(1):1–16

    Article  CAS  Google Scholar 

  29. Vander Griend RA (1994) The effect of internal fixation on the healing of large allografts. J Bone Jt Surg Am 76(5):657–663

    Article  CAS  Google Scholar 

  30. Lin KY, Bartlett SP, Yaremchuk MJ, Fallon M, Grossman RF, Whitaker LA (1990) The effect of rigid fixation on the survival of onlay bone grafts: an experimental study. Plast Reconstr Surg 86(3):449–456

    Article  CAS  PubMed  Google Scholar 

  31. Cai M, Li ZW, He TF, Li FC, Chen QX (2010) The efficacy analysis for the treatment with one cage and excised local bone graft intrans-foraminal lumbar interbody fusion. J Clin Orthop 06:605–608

    Google Scholar 

  32. Zhou GX, Wu SJ, Zhao JN, Wang YR (2004) The affecting factors on the bone-healing of allografts. J Med Postgrad 10:952–954+956

    Google Scholar 

  33. Weiser L, Huber G, Sellenschloh K, Viezens L, Püschel K, Morlock MM, Lehmann W (2017) Insufficient stability of pedicle screws in osteoporotic vertebrae: biomechanical correlation of bone mineral density and pedicle screw fixation strength. Eur Spine J. doi:10.1007/s00586-017-5091-x

    Google Scholar 

  34. Krishnan V, Varghese V, Kumar GS (2016) Comparative analysis of effect of density, insertion angle and reinsertion on pull-out strength of single and two pedicle screw constructs using synthetic bone model. Asian Spine J 10(3):414–421

    Article  PubMed  PubMed Central  Google Scholar 

  35. Miyaji T, Nakase T, Azuma Y, Shimizu N, Uchiyama Y, Yoshikawa H (2005) Alendronate inhibits bone resorption at the bone-screw interface. Clin Orthop Relat Res 430:195–201

    Article  Google Scholar 

  36. Tu CW, Huang KF, Hsu HT, Li HY, Yang SS, Chen YC (2014) Zoledronic acid infusion for lumbar interbody fusion in osteoporosis. J Surg Res 192(1):112–116. doi:10.1016/j.jss.2014.05.034

    Article  CAS  PubMed  Google Scholar 

  37. Frymoyer JW, Hanley EN Jr, Howe J, Kuhlmann D, Matteri RE (1979) A comparison of radiographic findings in fusion and nonfusion patients ten or more years following lumbar disc surgery. Spine (Phila Pa 1976) 4(5):435–440

    Article  CAS  Google Scholar 

  38. Lee CK, Langrana NA (1984) Lumbosacral spinal fusion. A biomechanical study. Spine (Phila Pa 1976) 9(6):574–581

    Article  CAS  Google Scholar 

  39. Klazen CA, Venmans A, de Vries J, van Rooij WJ, Jansen FH, Blonk MC, Lohle PN, Juttmann JR, Buskens E, van Everdingen KJ, Muller A, Fransen H, Elgersma OE, Mali WP, Verhaar HJ (2010) Percutaneous vertebroplasty is not a risk factor for new osteoporotic compression fractures: results from VERTOS II. AJNR Am J Neuroradiol 31(8):1447–1450. doi:10.3174/ajnr.A2148

    Article  CAS  PubMed  Google Scholar 

  40. Lu K, Liang C-L, Hsieh C-H, Tsai Y-D, Chen H-J, Liliang P-C (2012) Risk factors of subsequent vertebral compression fractures after vertebroplasty. Pain Med 13(3):376–382. doi:10.1111/j.1526-4637.2011.01297.x

    Article  PubMed  Google Scholar 

  41. Yoo CM, Park KB, Hwang SH, Kang DH, Jung JM, Park IS (2012) The analysis of patterns and risk factors of newly developed vertebral compression fractures after percutaneous vertebroplasty. J Korean Neurosurg Soc 52(4):339–345. doi:10.3340/jkns.2012.52.4.339

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bawa HS, Weick J, Dirschl DR (2015) Anti-osteoporotic therapy after fragility fracture lowers rate of subsequent fracture. Anal Large Popul Sample 97(19):1555–1562. doi:10.2106/jbjs.n.01275

    Google Scholar 

  43. Chou WY, Hsu CJ, Chang WN, Wong CY (2002) Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Arch Orthop Trauma Surg 122(1):39–43

    Article  PubMed  Google Scholar 

  44. Bastian L, Lange U, Knop C, Tusch G, Blauth M (2001) Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study. Eur Spine J 10(4):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was provided by the National Natural Science Foundation of China (Grant no. 81520108018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoyong Yin or Lipeng Yu.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Chen, J., Fan, J. et al. Effect of zoledronic acid on lumbar spinal fusion in osteoporotic patients. Eur Spine J 26, 2969–2977 (2017). https://doi.org/10.1007/s00586-017-5286-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5286-1

Keywords

Navigation