Skip to main content
Log in

Novel augmentation technique of percutaneous pedicle screw fixation using hydroxyapatite granules in the osteoporotic lumbar spine: a cadaveric biomechanical analysis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Percutaneous pedicle screw (PPS) fixation has been commonly used for various spine surgeries. Rigid PPS fixation is necessary to decrease the incidence of screw loosening in osteoporotic spine. Recently, we have reported biomechanical advantages of augmentation technique using hydroxyapatite (HA) granules for PPS fixation in synthetic bone. However, its biomechanical performance in augmenting PPS fixation for osteoporotic spine has not been fully elucidated. The aim of the present study is to perform a cadaveric biomechanical analysis of PPS fixation augmented with HA granules.

Methods

Thirty osteoporotic lumbar vertebrae (L1–L5) were obtained from 6 cadavers (3 men and 3 women; age 80 ± 9 years; bone mineral density 73 ± 9 mg/cm3). The maximal pullout strength and maximal insertion torque were compared between the screws inserted into the vertebrae with and without augmentation. In toggle testing, the number of craniocaudal toggle cycles and maximal load required to achieve the 2-mm screw head displacement were also compared.

Results

The maximal pullout strength in the screws augmented with HA granules was significantly greater compared to those without augmentation (p < 0.05). The augmentation significantly increased the maximal insertion torque of the screws (p < 0.05). Moreover, the number of toggle cycles and the maximal load required to reach 2 mm of displacement were significantly higher in the augmented screws (p < 0.05).

Conclusion

The PPS fixation was significantly enhanced by the augmentation with HA granules in the osteoporotic lumbar spine. The PPS fixation augmented with HA granules might decrease the incidence of screw loosening and implant failure in patients with osteoporotic spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mobbs RJ, Sivabalan P, Li J (2011) Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci 18(6):741–749. https://doi.org/10.1016/j.jocn.2010.09.019

    Article  PubMed  Google Scholar 

  2. Zhang W, Li H, Zhou Y et al (2016) Minimally invasive posterior decompression combined with percutaneous pedicle screw fixation for the treatment of thoracolumbar fractures with neurological deficits. Spine 41:B23–B29. https://doi.org/10.1097/BRS.0000000000001814

    Article  PubMed  Google Scholar 

  3. Lehman RA, Kang DG, Wagner SC (2015) Management of osteoporosis in spine surgery. J Am Acad Orthop Surg 23(4):253–263. https://doi.org/10.5435/JAAOS-D-14-00042

    Article  PubMed  Google Scholar 

  4. Okuyama K, Abe E, Suzuki T et al (2000) Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine 25(7):858–864

    Article  CAS  Google Scholar 

  5. Okuyama K, Abe E, Suzuki T et al (2001) Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J 1(6):402–407

    Article  CAS  Google Scholar 

  6. Foley KT, Holly LT, Schwender JD (2003) Minimally invasive lumbar fusion. Spine 28(15 Suppl):S26–35. https://doi.org/10.1097/01.BRS.0000076895.52418.5E

    Article  PubMed  Google Scholar 

  7. Kuklo TR, Dmitriev AE, Cardoso MJ et al (2008) Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws. Spine 33(15):E482–487. https://doi.org/10.1097/BRS.0b013e31817c64d5

    Article  PubMed  Google Scholar 

  8. Ohba T, Ebata S, Oba H et al (2019) Risk factors for clinically relevant loosening of percutaneous pedicle screws. Spine Surg Relat Res 3(1):79–85. https://doi.org/10.22603/ssrr.2018-0018

    Article  PubMed  Google Scholar 

  9. Park Y, Seok S-O, Lee S-B et al (2018) Minimally invasive lumbar spinal fusion is more effective than open fusion: a meta-analysis. Yonsei Med J 59(4):524–538. https://doi.org/10.3349/ymj.2018.59.4.524

    Article  PubMed  PubMed Central  Google Scholar 

  10. Son S, Lee SG, Park CW et al (2012) Minimally invasive multilevel percutaneous pedicle screw fixation for lumbar spinal diseases. Korean J Spine 9(4):352–357. https://doi.org/10.14245/kjs.2012.9.4.352

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cho W, Cho SK, Wu C (2010) The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg Br 92(8):1061–1065. https://doi.org/10.1302/0301-620X.92B8.24237

    Article  CAS  PubMed  Google Scholar 

  12. Hongo M, Ilharreborde B, Gay RE et al (2009) Biomechanical evaluation of a new fixation device for the thoracic spine. Eur Spine J 18(8):1213–1219. https://doi.org/10.1007/s00586-009-0999-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Murakami H, Tsai K-J, Attallah-Wasif ES et al (2006) A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation. Spine 31(9):967–971. https://doi.org/10.1097/01.brs.0000214932.49027.6a

    Article  PubMed  Google Scholar 

  14. Kanno H, Aizawa T, Hashimoto K et al (2019) Enhancing percutaneous pedicle screw fixation with hydroxyapatite granules: a biomechanical study using an osteoporotic bone model. PLoS ONE 14(9):e0223106. https://doi.org/10.1371/journal.pone.0223106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Furderer S, Scholten N, Coenen O et al (2011) In-vitro comparison of the pullout strength of 3 different thoracic screw fixation techniques. J Spinal Disord Tech 24(1):E6–10. https://doi.org/10.1097/BSD.0b013e3181d47f9f

    Article  PubMed  Google Scholar 

  16. Okuyama K, Sato K, Abe E et al (1993) Stability of transpedicle screwing for the osteoporotic spine: an in vitro study of the mechanical stability. Spine 18(15):2240–2245

    Article  CAS  Google Scholar 

  17. Matsuzaki H, Tokuhashi Y, Wakabayashi K et al (2001) Effects of hydroxyapatite solid granule (HA Stick) on pedicle screwing for osteoporotic patients. Clin Orthop Surg 36:529–534

    Google Scholar 

  18. Koller H, Zenner J, Hitzl W et al (2013) The impact of a distal expansion mechanism added to a standard pedicle screw on pullout resistance. A Biomech Study Spine J 13(5):532–541. https://doi.org/10.1016/j.spinee.2013.01.038

    Article  Google Scholar 

  19. Baluch DA, Patel AA, Lullo B et al (2014) Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine 39(22):E1297–E1302. https://doi.org/10.1097/BRS.0000000000000553

    Article  PubMed  Google Scholar 

  20. Liu D, Zhang Y, Lei W et al (2014) Comparison of 2 kinds of pedicle screws in primary spinal instrumentation biomechanical and interfacial evaluations in sheep vertebrae in vitro. J Spinal Disord Tech 27(2):E72–E80. https://doi.org/10.1097/BSD.0b013e318299f4b1

    Article  PubMed  Google Scholar 

  21. Wang WT, Guo CH, Duan K et al (2019) Dual pitch titanium-coated pedicle screws improve initial and early fixation in a polyetheretherketone rod semi-rigid fixation system in sheep. Chin Med J (Engl) 132(21):2594–2600. https://doi.org/10.1097/CM9.0000000000000335

    Article  Google Scholar 

  22. Jacobs JE, Boxt LM, Desjardins B et al (2006) ACR practice guideline for the performance and interpretation of cardiac computed tomography (CT). J Am Coll Radiol 3(9):677–685. https://doi.org/10.1016/j.jacr.2006.06.006

    Article  PubMed  Google Scholar 

  23. Wilke HJ, Kaiser D, Volkheimer D et al (2016) A pedicle screw system and a lamina hook system provide similar primary and long-term stability: a biomechanical in vitro study with quasi-static and dynamic loading conditions. Eur Spine J 25(9):2919–2928. https://doi.org/10.1007/s00586-016-4679-x

    Article  PubMed  Google Scholar 

  24. Kueny RA, Kolb JP, Lehmann W et al (2014) Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. Eur Spine J 23(10):2196–2202. https://doi.org/10.1007/s00586-014-3476-7

    Article  PubMed  Google Scholar 

  25. Hasegawa T, Inufusa A, Imai Y et al (2005) Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J 5(3):239–243. https://doi.org/10.1016/j.spinee.2004.11.010

    Article  PubMed  Google Scholar 

  26. Spivak JM, Neuwirth MG, Labiak JJ et al (1994) Hydroxyapatite enhancement of posterior spinal instrumentation fixation. Spine 19(8):955–964

    Article  CAS  Google Scholar 

  27. Shin SJ, Lee J-H, Lee JH (2017) Influence of hydroxyapatite stick on pedicle screw fixation in degenerative lumbar spine: biomechanical and radiologic study. Clin Spine Surg 30(6):E819–E826. https://doi.org/10.1097/BSD.0000000000000405

    Article  PubMed  Google Scholar 

  28. Becker S, Chavanne A, Spitaler R et al (2008) Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J 17(11):1462–1469. https://doi.org/10.1007/s00586-008-0769-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elder BD, Lo S-FL, Holmes C et al (2015) The biomechanics of pedicle screw augmentation with cement. Spine J 15(6):1432–1445. https://doi.org/10.1016/j.spinee.2015.03.016

    Article  PubMed  Google Scholar 

  30. Galbusera F, Volkheimer D, Reitmaier S et al (2015) Pedicle screw loosening: a clinically relevant complication? Eur Spine J 24(5):1005–1016. https://doi.org/10.1007/s00586-015-3768-6

    Article  PubMed  Google Scholar 

  31. Derincek A, Wu C, Mehbod A et al (2006) Biomechanical comparison of anatomic trajectory pedicle screw versus injectable calcium sulfate graft-augmented pedicle screw for salvage in cadaveric thoracic bone. J Spinal Disord Tech 19(4):286–291. https://doi.org/10.1097/01.bsd.0000211203.31244.a0

    Article  PubMed  Google Scholar 

  32. Wu Z-x, Gong F-t, Liu L et al (2012) A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg 132(4):471–476. https://doi.org/10.1007/s00402-011-1439-6

    Article  PubMed  Google Scholar 

  33. Liebsch C, Zimmermann J, Graf N et al (2018) In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application. J Mech Behav Biomed Mater 77:578–585. https://doi.org/10.1016/j.jmbbm.2017.10.030

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Michio Hongo and Dr. Keitaro Matsukawa for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Kanno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanno, H., Aizawa, T., Hashimoto, K. et al. Novel augmentation technique of percutaneous pedicle screw fixation using hydroxyapatite granules in the osteoporotic lumbar spine: a cadaveric biomechanical analysis. Eur Spine J 30, 71–78 (2021). https://doi.org/10.1007/s00586-020-06451-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-020-06451-2

Keywords

Navigation