Skip to main content

Advertisement

Log in

Do microvascular changes occur preceding neural impairment in early-stage diabetic retinopathy? Evidence based on the optic nerve head using optical coherence tomography angiography

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

To evaluate the microvascular and neural differences of the optic nerve head (ONH) between type 2 diabetes mellitus (T2DM) subjects and controls.

Methods

This was a cross-sectional observational study. One hundred and eight eyes of 108 T2DM subjects with or without diabetic retinopathy (DR) (54 preclinical DR and 54 mild-to-moderate DR) were included. Fifty-two eyes of 52 healthy subjects were included as controls. The 4.5-mm Angio Disc scan mode and the ganglion cell complex scan mode were performed with all participants using AngioVue software 2.0 of the optical coherence tomography angiography (OCTA) device.

Results

Regarding ONH radial peripapillary capillary (RPC) density, the peripapillary region was mainly significantly reduced in the No-DR (NDR) group. Moreover, the RPC density of the peripapillary region and the inside optic disc area were significantly reduced in the non-proliferative DR (NPDR) group. When compared to the controls, significantly reduced peripapillary capillary density in six sections was observed in the NPDR group. However, reduced density was observed in only two sections in the NDR group. The NPDR group had significantly increased focal loss volume (FLV) and reduced peripapillary RNFL thickness in the inferior nasal section compared to those in the controls, but similar changes were not observed in the NDR group. A regression model identified RPCs inside the optic disc as a significant parameter in early-stage DR detection. In the NPDR group, BCVA showed a significantly negative correlation with RPCs inside the optic disc and a significantly positive correlation with FLV.

Conclusions

OCTA findings of the ONH area may provide evidence that microvascular changes occur preceding neural impairment in early-stage DR. However, further researches are still needed to support the statement. Reduced ONH perfusion inside the optic disc may be one of the crucial biomarkers in early-stage DR detection and is a possible sensitive visual acuity predictor in early-stage DR subjects. With the ONH mode, OCTA may be a more promising tool in DR screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wong TY, Cheung CM, Larsen M, Sharma S, Simo R (2016) Diabetic retinopathy. Nat Rev Dis Primers 2:16012

    Article  PubMed  Google Scholar 

  2. Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Progr Retinal Eye Res 51:156–186

    Article  Google Scholar 

  3. Lechner J, O’Leary OE, Stitt AW (2017) The pathology associated with diabetic retinopathy. Vis Res 139:7–14

    Article  PubMed  Google Scholar 

  4. Chua J, Lim CXY, Wong TY, Sabanayagam C (2018) Diabetic retinopathy in the Asia-Pacific. Asia Pac J Ophthalmol (Phila) 7(1):3–16

    Google Scholar 

  5. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239

    Article  CAS  PubMed  Google Scholar 

  6. Klaassen I, Van Noorden CJ, Schlingemann RO (2013) Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 34:19–48

    Article  CAS  PubMed  Google Scholar 

  7. Carpineto P, Toto L, Aloia R et al (2016) Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus. Eye (Lond) 30(5):673–679

    Article  CAS  Google Scholar 

  8. Moran EP, Wang Z, Chen J, Sapieha P, Smith LE, Ma JX (2016) Neurovascular cross talk in diabetic retinopathy: pathophysiological roles and therapeutic implications. Am J Physiol Heart Circ Physiol 311(3):H738–H749

    Article  PubMed  PubMed Central  Google Scholar 

  9. Simo R, Stitt AW, Gardner TW (2018) Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia 61(9):1902–1912

    Article  PubMed  PubMed Central  Google Scholar 

  10. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55

    Article  PubMed  Google Scholar 

  11. Ashraf M, Nesper PL, Jampol LM, Yu F, Fawzi AA (2018) Statistical model of optical coherence tomography angiography parameters that correlate with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci 59(10):4292–4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim K, Kim ES, Yu SY (2018) Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes. Br J Ophthalmol 102(9):1226–1231

    Article  PubMed  Google Scholar 

  13. Kaizu Y, Nakao S, Sekiryu H et al (2018) Retinal flow density by optical coherence tomography angiography is useful for detection of nonperfused areas in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 256(12):2275–2282

    Article  PubMed  Google Scholar 

  14. Alnawaiseh M, Lahme L, Müller V, Rosentreter A, Eter N (2018) Correlation of flow density, as measured using optical coherence tomography angiography, with structural and functional parameters in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 256(3):589–597

    Article  PubMed  Google Scholar 

  15. Li Z, Alzogool M, Xiao J, Zhang S, Zeng P, Lan Y (2018) Optical coherence tomography angiography findings of neurovascular changes in type 2 diabetes mellitus patients without clinical diabetic retinopathy. Acta Diabetol 55(10):1075–1082

    Article  PubMed  Google Scholar 

  16. Solomon SD, Chew E, Duh EJ et al (2017) Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care 40(3):412–418

    Article  PubMed  PubMed Central  Google Scholar 

  17. Whelton PK, Carey RM, Aronow WS et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71(6):1269–1324

    Article  CAS  PubMed  Google Scholar 

  18. Tuttle KR, Bakris GL, Bilous RW et al (2014) Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care 37(10):2864–2883

    Article  PubMed  PubMed Central  Google Scholar 

  19. Carnevali A, Sacconi R, Corbelli E et al (2017) Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol 54(7):695–702

    Article  CAS  PubMed  Google Scholar 

  20. Simonett JM, Scarinci F, Picconi F et al (2017) Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol 95(8):e751–e755

    Article  PubMed  Google Scholar 

  21. Cao D, Yang D, Yu H et al (2018) Optic nerve head perfusion changes preceding peripapillary retinal nerve fiber layer thinning in preclinical diabetic retinopathy. Clin Exp Ophthalmol. https://doi.org/10.1111/ceo.13390

    Article  PubMed  Google Scholar 

  22. Mansoori T, Sivaswamy J, Gamalapati JS, Balakrishna N (2018) Topography and correlation of radial peripapillary capillary density network with retinal nerve fibre layer thickness. Int Ophthalmol 38(3):967–974

    Article  PubMed  Google Scholar 

  23. Chan G, Balaratnasingam C, Xu J et al (2015) In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation. Microvasc Res 100:32–39

    Article  PubMed  Google Scholar 

  24. Scoles D, Gray DC, Hunter JJ et al (2009) In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison. BMC Ophthalmol 9:9

    Article  PubMed  PubMed Central  Google Scholar 

  25. van Dijk HW, Verbraak FD, Kok PH et al (2012) Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 53(6):2715–2719

    Article  PubMed  PubMed Central  Google Scholar 

  26. Santos AR, Ribeiro L, Bandello F et al (2017) Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: cross-sectional analyses of baseline data of the EUROCONDOR project. Diabetes 66(9):2503–2510

    Article  CAS  PubMed  Google Scholar 

  27. Kusari J, Zhou S, Padillo E, Clarke KG, Gil DW (2007) Effect of memantine on neuroretinal function and retinal vascular changes of streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 48(11):5152–5159

    Article  PubMed  Google Scholar 

  28. Ziccardi L, Parisi V, Picconi F et al (2018) Early and localized retinal dysfunction in patients with type 1 diabetes mellitus studied by multifocal electroretinogram. Acta Diabetol 55(11):1191–1200

    Article  CAS  PubMed  Google Scholar 

  29. Simo R, Hernandez C, Porta M et al (2018) Effects of topically administered neuroprotective drugs in early stages of diabetic retinopathy. Results of the EUROCONDOR Clinical Trial. Diabetes. https://doi.org/10.2337/db18-0682

    Article  PubMed  Google Scholar 

  30. Araszkiewicz A, Zozulinska-Ziolkiewicz D et al (2012) Neurodegeneration of the retina in type 1 diabetic patients. Pol Arch Med Wewn 122(10):464–470

    PubMed  Google Scholar 

  31. Zang P, Gao SS, Hwang TS et al (2017) Automated boundary detection of the optic disc and layer segmentation of the peripapillary retina in volumetric structural and angiographic optical coherence tomography. Biomed Opt Express 8(3):1306

    Article  PubMed  PubMed Central  Google Scholar 

  32. Leite MT, Rao HL, Weinreb RN et al (2011) Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am J Ophthalmol 151(1):85–92.e81

    Article  PubMed  Google Scholar 

  33. Jia Y, Simonett JM, Wang J et al (2017) Wide-field OCT angiography investigation of the relationship between radial peripapillary capillary plexus density and nerve fiber layer thickness. Invest Ophthalmol Vis Sci 58(12):5188–5194

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Q, Chan SY, Yang JY et al (2017) Density of the macular and radial peripapillary capillary network measured by optical coherence tomography angiography. Acta Ophthalmol 95(6):e511–e512

    Article  PubMed  Google Scholar 

  35. Triolo G, Rabiolo A, Shemonski ND et al (2017) Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci 58(13):5713–5722

    Article  PubMed  Google Scholar 

  36. Eladawi N, Elmogy M, Khalifa F et al (2018) Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images. Med Phys. https://doi.org/10.1002/mp.13142

    Article  PubMed  Google Scholar 

  37. Samara WA, Shahlaee A, Adam MK et al (2017) Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 124(2):235–244

    Article  PubMed  Google Scholar 

  38. Snodderly DM, Weinhaus RS, Choi JC (1992) Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J Neurosci 12(4):1169–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stone J, van Driel D, Valter K, Rees S, Provis J (2008) The locations of mitochondria in mammalian photoreceptors: relation to retinal vasculature. Brain Res 1189:58–69

    Article  CAS  PubMed  Google Scholar 

  40. Campbell JP, Zhang M, Hwang TS et al (2017) Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep 7:42201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was funded by the National Natural Science Foundation of China 81570845 and the Natural Science Foundation of Guangdong Province 2015A030313019.

Funding

National Natural Science Foundation of China 81570845; Natural Science Foundation of Guangdong Province 2015A030313019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Lan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

All procedures were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed By Antonio Secchi.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wen, X., Zeng, P. et al. Do microvascular changes occur preceding neural impairment in early-stage diabetic retinopathy? Evidence based on the optic nerve head using optical coherence tomography angiography. Acta Diabetol 56, 531–539 (2019). https://doi.org/10.1007/s00592-019-01288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-019-01288-8

Keywords

Navigation