Skip to main content

Advertisement

Log in

Recent fluorescence imaging technology applications of indocyanine green in general thoracic surgery

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Thoracic surgeons perform a wide variety of cancer operations, which are often associated with high morbidity and mortality. Thus, thoracic surgery involves many special challenges that require innovative solutions. The increased utilization of minimally invasive practices, poor overall cancer survival, and significant morbidity of critical operations remain key obstacles to overcome. Fluorescence imaging technology (FIT), involving the implementation of fluorescent dyes and imaging systems, is currently used as an adjunct for general thoracic surgery in many situations and includes sentinel lymph node mapping, pulmonary intersegmental plane identification, pulmonary nodule identification, pulmonary bullous lesion detection, evaluation of the anastomotic perfusion after tracheal surgery, and thoracic duct imaging for postoperative chylothorax. This technology enhances the surgeon’s ability to perform operations, and has specific advantages. We review some of the key studies that demonstrate the applications of FIT in the field of general thoracic surgery, focusing on the use of indocyanine green.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Okusanya OT, Hess NR, Luketich JD, Sarkaria IS. Infrared intraoperative fluorescence imaging using indocyanine green in thoracic surgery. Eur J Cardiothorac Surg. 2018;53:512–8.

    PubMed  Google Scholar 

  2. Moody ED, Viskari PJ, Colyer CL. Non-covalent labeling of human serum albumin with indocyanine green: a study by capillary electrophoresis with diode laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl. 1999;729:55–64.

    CAS  PubMed  Google Scholar 

  3. De Grand AM, Lomnes SJ, Lee DS, Pietrzykowski M, Ohnishi S, Morgan TG, et al. Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons. J Biomed Opt. 2006;11:014007.

    PubMed  PubMed Central  Google Scholar 

  4. De Jesus E, Keating JJ, Kularatne SA, Jiang J, Judy R, Predina J, et al. Comparison of folate receptor targeted optical contrast agents for intraoperative molecular imaging. Int J Mol Imaging. 2015;2015:469047.

    PubMed  PubMed Central  Google Scholar 

  5. O’Shannessy DJ, Yu G, Smale R, Fu YS, Singhal S, Thiel RP, et al. Folate receptor alpha expression in lung cancer: Diagnostic and prognostic significance. Oncotarget. 2012;3:414–25.

    PubMed  PubMed Central  Google Scholar 

  6. Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Adv Drug Deliv Rev. 2004;56:1067–84.

    CAS  PubMed  Google Scholar 

  7. Dosio F, Milla P, Cattel L. EC-145, a folate-targeted Vinca alkaloid conjugate for the potential treatment of folate receptor-expressing cancers. Curr Opin Investig Drugs. 2010;11:1423–33.

    Google Scholar 

  8. Low PS, Kularatne SA. Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol. 2009;13:256–62.

    CAS  PubMed  Google Scholar 

  9. Ebel W, Routhier EL, Foley B, Jacob S, McDonough JM, Patel RK, Turchin HA, et al. Preclinical evaluation of MORAb-003, a humanized monoclonal antibody antagonizing folate receptor-alpha. Cancer Immun. 2007;7:6.

    PubMed  PubMed Central  Google Scholar 

  10. Spannuth WA, Sood AK, Coleman RL. Farletuzumab in epithelial ovarian carcinoma. Expert Opin Biol Ther. 2010;10:431–7.

    CAS  PubMed  Google Scholar 

  11. Konner JA, Bell-McGuinn KM, Sabbatini P, Hensley ML, Tew WP, Pandit-Taskar N, et al. Farletuzumab, a humanized monoclonal antibody against folate receptor alpha, in epithelial ovarian cancer: a phase I study. Clin Cancer Res. 2010;16:5288–95.

    CAS  PubMed  Google Scholar 

  12. Chilvers AS, Thomas MH. Methods for the localization of incompetent ankle perforating veins. Br Med J. 1970;2:577–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Feindel W, Yamamoto YL, Hodge CP. Red cerebral veins and the cerebral steal syndrome. Evidence from fluorescein angiography and microregional blood flow by radioisotopes during excision of an angioma. J Neurosurg. 1971;35:167–79.

  14. Ross AJ 3rd, O'Neill JA Jr, Silverman DG, Brousseau DA, Gatti JE, Templeton JM Jr. A new technique for evaluating cutaneous vascularity in complicated conjoined twins. J Pediatr Surg. 1985;20:743–6.

    PubMed  Google Scholar 

  15. Keating JJ, Okusanya OT, De Jesus E, Judy R, Jiang J, Deshpande C, et al. Intraoperative molecular imaging of lung adenocarcinoma can identify residual tumor cells at the surgical margins. Mol Imaging Biol. 2016;18:209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoogstins CE, Tummers QR, Gaarenstroom KN, de Kroon CD, Trimbos JB, Bosse T, et al. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer. Clin Cancer Res. 2016;22:2929–38.

    CAS  PubMed  Google Scholar 

  17. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58:R37–61.

    PubMed  Google Scholar 

  18. Gioux S, Choi HS, Frangioni JV. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol. Imaging. 2010;9:237–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pikin O, Filonenko E, Mironenko D, Vursol D, Amiraliev A. Fluorescence thoracoscopy in the detection of pleural malignancy. Eur J Cardiothorac Surg. 2012;41:649–52.

    PubMed  Google Scholar 

  20. Veronesi U, Paganelli G, Galimberti V, Viale G, Zurrida S, Bedoni M, et al. Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet. 1997;349:1864–7.

    CAS  PubMed  Google Scholar 

  21. Albertini JJ, Cruse CW, Rapaport D, Wells K, Ross M, DeConti R, et al. Intraoperative radio-lympho-scintigraphy improves sentinel lymph node identification for patients with melanoma. Ann Surg. 1996;223:217–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson JF, McCarthy WH, Bosch CM, O'Brien CJ, Quinn MJ, Paramaesvaran S, et al. Sentinel lymph node status as an indicator of the presence of metastatic melanoma in regional lymph nodes. Melanoma Res. 1995;5:255–60.

    CAS  PubMed  Google Scholar 

  23. Tiffet O, Nicholson AG, Khaddage A, Prévot N, Ladas G, Dubois F, et al. Feasibility of the detection of the sentinel lymph node in peripheral non-small cell lung cancer with radio isotopic and blue dye techniques. Chest. 2005;127:443–8.

    PubMed  Google Scholar 

  24. Schmidt FE, Woltering EA, Webb WR, Garcia OM, Cohen JE, Rozans MH. Sentinel nodal assessment in patients with carcinoma of the lung. Ann Thorac Surg. 2002;74:870–5.

    PubMed  Google Scholar 

  25. Ito N, Fukuta M, Tokushima T, Nakai K, Ohgi S. Sentinel node navigation surgery using indocyanine green in patients with lung cancer. Surg Today. 2004;34:581–5.

    PubMed  Google Scholar 

  26. Yamashita S-I, Tokuishi K, et al. Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer. Ann Surg Oncol. 2012;19:728–33.

    PubMed  Google Scholar 

  27. Yamashita S, Tokuishi K, Anami K, Miyawaki M, Moroga T, Kamei M, et al. Video-assisted thoracoscopic indocyanine green fluorescence imaging system shows sentinel lymph nodes in non-small-cell lung cancer. J Thorac Cardiovasc Surg. 2011;141:141–4.

    PubMed  Google Scholar 

  28. Gilmore DM, Khullar OV, Jaklitsch MT, Chirieac LR, Frangioni JV, Colson YL. Identification of metastatic nodal disease in a phase 1 dose escalation trial of intraoperative sentinel lymph node mapping in nonsmall cell lung cancer using near-infrared imaging. J Thorac Cardiovasc Surg. 2013;146:562–70.

    PubMed  PubMed Central  Google Scholar 

  29. Nomori H, Cong Y, Sugimura H. Utility and pitfalls of sentinel node identification using indocyanine green during segmentectomy for cT1N0M0 non-small cell lung cancer. Surg Today. 2016;46:908–13.

    CAS  PubMed  Google Scholar 

  30. Yuasa Y, Seike J, Yoshida T, Takechi H, Yamai H, Yamamoto Y, et al. Sentinel lymph node biopsy using intraoperative indocyanine green fluorescence imaging navigated with preoperative CT lymphography for superficial esophageal cancer. Ann Surg Oncol. 2012;19:486–93.

    PubMed  Google Scholar 

  31. Hachey KJ, Gilmore DM, Armstrong KW, Harris SE, Hornick JL, Colson YL, et al. Safety and feasibility of near-infrared image-guided lymphatic mapping of regional lymph nodes in esophageal cancer. J Thorac Cardiovasc Surg. 2016;152:546–54.

    PubMed  PubMed Central  Google Scholar 

  32. Schlottmann F, Barbetta A, Mungo B, Lidor AO, Molena D. Identification of the lymphatic drainage pattern of esophageal cancer with nearinfrared fluorescent imaging. J Laparoendosc Adv Surg Tech A. 2017;27:268–71.

    PubMed  PubMed Central  Google Scholar 

  33. Helminen O, Mrena J, Sihvo E. Near-infrared image-guided lymphatic mapping in minimally invasive oesophagectomy of distal oesophageal cancer. Eur J Cardiothorac Surg. 2017;52:952–7.

    PubMed  Google Scholar 

  34. Cahan WG. Radical lobectomy. J Thorac Cardiovasc Surg. 1960;39:555–72.

    CAS  PubMed  Google Scholar 

  35. Bedetti B, Bertolaccini L, Rocco R, Schmidt J, Solli P, Scarci M. Segmentectomy versus lobectomy for stage I non-small cell lung cancer: a systematic review and meta-analysis. J Thorac Dis. 2017;9:1615–23.

    PubMed  PubMed Central  Google Scholar 

  36. Nomori H, Shiraishi A, Cong Y, Sugimura H, Mishima S. Differences in postoperative changes in pulmonary functions following segmentectomy compared with lobectomy. Eur J Cardiothorac Surg. 2018;53:640–7.

    PubMed  Google Scholar 

  37. Okada M, Mimura T, Ikegaki J, Katoh H, Itoh H, Tsubota N. A novel video-assisted anatomic segmentectomy technique: selective segmental inflation via bronchofiberoptic jet followed by cautery cutting. J Thorac Cardiovasc Surg. 2007;133:753–8.

    PubMed  Google Scholar 

  38. Oizumi H, Kato H, Endoh M, Inoue T, Watarai H, Sadahiro M. Slip knot bronchial ligation method for thoracoscopic lung segmentectomy. Ann Thorac Surg. 2014;97:1456–8.

    PubMed  Google Scholar 

  39. Sekine Y, Ko E, Oishi H, Miwa M. A simple and effective technique for identification of intersegmental planes by infrared thoracoscopy after transbronchial injection of indocyanine green. J Thorac Cardiovasc Surg. 2012;143:1330–5.

    PubMed  Google Scholar 

  40. Oh S, Suzuki K, Miyasaka Y, Matsunaga T, Tsushima Y, Takamochi K. New technique for lung segmentectomy using indocyanine green injection. Ann Thorac Surg. 2013;95:2188–90.

    PubMed  Google Scholar 

  41. Sekine Y, Itoh T, Toyoda T, et al. Precise anatomical sublobar resection using a 3d medical image analyzer and fluorescence-guided surgery with transbronchial instillation of indocyanine green. Semin Thorac Cardiovasc Surg. 2019;S1043–0679:30413–21.

    Google Scholar 

  42. Misaki N, Chang SS, Gotoh M, Yamamoto Y, Satoh K, Yokomise H. A novel method for determining adjacent lung segments with infrared thoracoscopy. J Thorac Cardiovasc Surg. 2009;138:613–8.

    PubMed  Google Scholar 

  43. Misaki N, Chang SS, Igai H, Tarumi S, Gotoh M, Yokomise H. New clinically applicable method for visualizing adjacent lung segments using an infrared thoracoscopy system. J Thorac Cardiovasc Surg. 2010;140:752–6.

    PubMed  Google Scholar 

  44. Tarumi S, Misaki N, Kasai Y, Chang SS, Go T, Yokomise H. Clinical trial of video-assisted thoracoscopic segmentectomy using infrared thoracoscopy with indocyanine green. Eur J Cardiothorac Surg. 2014;46:112–5.

    PubMed  Google Scholar 

  45. Chen R, Ma Y, Li C, et al. A pilot study of pulmonary segmentectomy with indocyanine green near-infrared angiography. Surg Innov. 2019;26:337–43.

    PubMed  Google Scholar 

  46. Mehta M, Patel YS, Yasufuku K, et al. Near-infrared mapping with indocyanine green is associated with an increase in oncological margin length in minimally invasive segmentectomy. J Thorac Cardiovasc Surg. 2019;157:2029–35.

    PubMed  Google Scholar 

  47. Mun M, Okumura S, Nakao M, Matsuura Y, Nakagawa K. Indocyanine green fluorescence-navigated thoracoscopic anatomical segmentectomy. J Vis Surg. 2017;3:80.

    PubMed  PubMed Central  Google Scholar 

  48. Matsuura Y, Mun M, Ichinose J, Nakao M, Nakagawa K, Okumura S. Recent fluorescence-based optical imaging for video-assisted thoracoscopic surgery segmentectomy. Ann Transl Med. 2019;7:32.

    PubMed  PubMed Central  Google Scholar 

  49. Blackmon SH, Feinglass SR. The United States preventive services task force recommendations for lung cancer screening. Thorac Surg Clin. 2015;25:199–203.

    PubMed  Google Scholar 

  50. Cerfolio RJ, Bryant AS, McCarty TP, Minnich DJ. A prospective study to determine the incidence of non-imaged malignant pulmonary nodules in patients who undergo metastasectomy by thoracotomy with lung palpation. Ann Thorac Surg. 2011;91:1696–701.

    PubMed  Google Scholar 

  51. Ujiie H, Kato T, Hu HP, Patel P, Wada H, Fujino K, et al. A novel minimally invasive near-infrared thoracoscopic localization technique of small pulmonary nodules: A phase I feasibility trial. J Thorac Cardiovasc Surg. 2017;154:702–11.

    PubMed  Google Scholar 

  52. Anayama T, Qiu J, Chan H, Nakajima T, Weersink R, Daly M, et al. Localization of pulmonary nodules using navigation bronchoscope and a near-infrared fluorescence thoracoscope. Ann Thorac Surg. 2015;99:224–30.

    PubMed  Google Scholar 

  53. Abbas A, Kadakia S, Ambur V, Muro K, Kaiser L. Intraoperative electromagnetic navigational bronchoscopic localization of small, deep, or subsolid pulmonary nodules. J Thorac Cardiovasc Surg. 2017;153:1581–90.

    PubMed  Google Scholar 

  54. Hachey KJ, Digesu CS, Armstrong KW, Gilmore DM, Khullar OV, Whang B, et al. A novel technique for tumor localization and targeted lymphatic mapping in early-stage lung cancer. J Thorac Cardiovasc Surg. 2017;154:1110–8.

    PubMed  PubMed Central  Google Scholar 

  55. Okusanya OT, Holt D, Heitjan D, Deshpande C, Venegas O, Jiang J, et al. Intraoperative near-infrared imaging can identify pulmonary nodules. Ann Thorac Surg. 2014;98:1223–300.

    PubMed  PubMed Central  Google Scholar 

  56. Kim HK, Quan YH, Choi BH, Park JH, Han KN, Choi Y, et al. Intraoperative pulmonary neoplasm identification using near-infrared fluorescence imaging. Eur J Cardiothorac Surg. 2016;49:1497–502.

    PubMed  Google Scholar 

  57. Kawakita N, Takizawa H, Sawada T, Matsumoto M, Tsuboi M, Toba H, et al. Indocyanine green fluorescence imaging for resection of pulmonary metastasis of hepatocellular carcinoma. J Thorac Dis. 2019;11:944–9.

    PubMed  PubMed Central  Google Scholar 

  58. Kitagawa N, Shinkai M, Mochizuki K, Usui H, Miyagi H, Nakamura K, et al. Navigation using indocyanine green fluorescence imaging for hepatoblastoma pulmonary metastases surgery. Pediatr Surg Int. 2015;31:407–11.

    PubMed  Google Scholar 

  59. Keating J, Newton A, Venegas O, Nims S, Zeh R, Predina J, et al. Near-infrared intraoperative molecular imaging can locate metastases to the lung. Ann. Thorac. Surg. 2016;5:391–403.

    Google Scholar 

  60. Predina JD, Newton AD, Corbett C, Shin M, Sulfyok LF, Okusanya OT, et al. Near-infrared intraoperative imaging for minimally invasive pulmonary metastasectomy for sarcomas. J Thorac Cardiovasc Surg. 2019;157:2061–9.

    PubMed  Google Scholar 

  61. Hamaji M, Chen-Yoshikawa TF, Minami M, Date H. Near-infrared imaging using intravenous indocyanine green at a conventional dose to locate pulmonary metastases: a pilot study. Thorac Cardiovasc Surg. 2018. https://doi.org/10.1055/s-0038-1675346.

    Article  PubMed  Google Scholar 

  62. Horio H, Nomori H, Fuyuno G, Kobayashi R, Suemasu K. Limited axillary thoracotomy vs video-assisted thoracoscopic surgery for spontaneous pneumothorax. Surg Endosc. 1998;12:1155–8.

    CAS  PubMed  Google Scholar 

  63. Gotoh M, Okamoto T, Yamamoto Y, Liu D, Kameyama K, Hayashi E, et al. Development of a canine model of pulmonary emphysema and imaging of the emphysematous lung with infrared thoracoscopy. J Thorac Cardiovasc Surg. 2003;126:1916–21.

    PubMed  Google Scholar 

  64. Gotoh M, Yamamoto Y, Igai H, Chang S, Huang C, Yokomise H. Clinical application of infrared thoracoscopy to detect bullous or emphysematous lesions of the lung. J Thorac Cardiovasc Surg. 2007;134:1498–501.

    PubMed  Google Scholar 

  65. Li H, Zhou J, Chi C, Mao Y, Yang F, Tian J, et al. Clinical application of near-infrared thoracoscope with indocyanine green in video-assisted thoracoscopic bullectomy. J Thorac Dis. 2016;8:1841–5.

    PubMed  PubMed Central  Google Scholar 

  66. Matsumoto K, Sano I, Taniguchi H, Yamasaki N, Tsuchiya T, Miyazaki T, et al. Thoracoscopic surgery for lung emphysema using an infrared camera. J Cardiothorac Surg. 2013;8:134.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Schweiger T, Schwarz S, Traxler D, Dodier P, Aigner C, Lang G, et al. Bronchoscopic indocyanine green fluorescence imaging of the anastomotic perfusion after tracheal surgery. Ann Thorac Surg. 2016;101:1943–9.

    PubMed  Google Scholar 

  68. Akin H, Olcmen A, Isgorucu O, Denizkiran I, Dincer I. Approach to patients with chylothorax complicating pulmonary resection. Thorac Cardiovasc Surg. 2012;60:135–9.

    CAS  PubMed  Google Scholar 

  69. Ashitate Y, Tanaka E, Stockdale A, Choi HS, Frangioni JV. Near-infrared fluorescence imaging of thoracic duct anatomy and function in open surgery and video-assisted thoracic surgery. J Thorac Cardiovasc Surg. 2011;142:31–38.e1–2

  70. Kamiya K, Unno N, Konno H. Intraoperative indocyanine green fluorescence lymphography, a novel imaging technique to detect a chyle fistula after an esophagectomy: report of a case. Surg Today. 2009;39:421–4.

    PubMed  Google Scholar 

  71. Kaburagi T, Takeuchi H, Oyama T, Nakamura R, Takahashi T, Wada N, et al. Intraoperative fluorescence lymphography using indocyanine green in a patient with chylothorax after esophagectomy: report of a case. Surg Today. 2013;43:206–10.

    PubMed  Google Scholar 

  72. Matsutani T, Hirakata A, Nomura T, Hagiwara N, Matsuda A, Yoshida H, et al. Transabdominal approach for chylorrhea after esophagectomy by using fluorescence navigation with indocyanine green. Case Rep Surg. 2014;2014:1–4.

    Google Scholar 

  73. Shirotsuki R, Uchida H, Tanaka Y, Shirota C, Yokota K, Murase N, et al. Novel thoracoscopic navigation surgery for neonatal chylothorax using indocyanine-green fluorescent lymphography. J Pediatr Surg. 2018;53:1246–9.

    PubMed  Google Scholar 

  74. Yang F, Zhou J, Li H, Yang F, Xiao R, Chi C, et al. Near-infrared fluorescence-guided thoracoscopic surgical intervention for postoperative chylothorax. Interact Cardiovasc Thorac Surg. 2018;26:171–5.

    PubMed  Google Scholar 

  75. Bethea BT, Okamura AM, Kitagawa M, Fitton TP, Cattaneo SM, Gott VL, et al. Application of haptic feedback to robotic surgery. J Laparoendosc Adv Surg Tech A. 2004;14:191–5.

    PubMed  PubMed Central  Google Scholar 

  76. Tholey G, Desai JP, Castellanos AE. Force feedback plays a significant role in minimally invasive surgery: Results and analysis. Ann Surg. 2005;241:102–9.

    PubMed  PubMed Central  Google Scholar 

  77. Hagen ME, Meehan JJ, Inan I, Morel P. Visual clues act as a substitute for haptic feedback in robotic surgery. Surg Endosc. 2008;22:1505–8.

    CAS  PubMed  Google Scholar 

  78. Kitagawa M, Dokko D, Okamura AM, Yuh DD. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg. 2005;29:151–8.

    Google Scholar 

  79. Okusanya OT, DeJesus EM, Jiang JX, Judy RP, Venegas OG, Deshpande CG, et al. Intraoperative molecular imaging can identify lung adenocarcinomas during pulmonary resection. J Thorac Cardiovasc Surg. 2015;150:28–35 e1.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Cancer Institute Hospital of Japanese Foundation for Cancer Research (No. 2010-1055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Matsuura.

Ethics declarations

Conflicts of interest

We have no conflicts of interest to declare.

Ethical approval

This research was approved by the Institutional Review Board of Clinical Research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuura, Y., Ichinose, J., Nakao, M. et al. Recent fluorescence imaging technology applications of indocyanine green in general thoracic surgery. Surg Today 50, 1332–1342 (2020). https://doi.org/10.1007/s00595-019-01906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-019-01906-6

Keywords

Navigation