Skip to main content
Log in

Hyperspherical Three-Body Calculation for Exotic Atoms

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Ground state energies of atomic three-body systems like negatively charged hydrogen, normal helium, positively charged-lithium, beryllium, carbon, oxygen, neon and negatively charged exotic- muonium and positronium atoms have been calculated adopting hyperspherical harmonics expansion method. Calculation of matrix elements of two body interactions needed in the hyperspherical harmonics expansion method for a three body system is greatly simplified by expanding the bra- and ket-vector states in the hyperspherical harmonics (HH) basis states appropriate for the partition corresponding to the interacting pair. This involves the Raynal–Revai coefficients (RRC), which are the transformation coefficients between the HH bases corresponding to the two partitions. Use of RRC become particularly essential for the numerical solution of three-body Schrődinger equation where the two-body potentials are other than Coulomb or harmonic. However in the present work the technique is used for two electron atoms 1H(p + e e ), D(d + e e ), Mu(μ + e e ),4He(4 He 2+ e e ),6Li(6 Li 3+ e e ),10Be(10 Be 4+ e e ),12C(12 C 6+ e e ),16O(16 O 8+ e e ) etc. and the exotic positronium negative ion Ps (e + e e ) where the interactions are purely Coulomb. The relative convergence in ground state binding energy with increasing K max for 20Ne has been demonstrated as a representative case. The calculated energies at K max  = 28 using RRC’s have been compared with those obtained by a straight forward manner in some representative cases to demonstrate the appropriateness of the use of RRC. The extrapolated energies have also been compared with those found in the literature. The calculated binding energies agree within the computational error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ancarani, L.U., Rodriguez, K.V., Gasaneo, G.: Ground and excited states for exotic three-body atomic systems. In: EPJ Web of Conferences 3, 02009 (2010); Correlated 1,3 S States for Coulomb Three-Body Systems. Int. J. Quantum Chem. 00, 0 (2011)00 (and references therein)

  2. Sultanov R.A., Dennis G.: Integraldifferential equations approach to atomic three-body systems. J. Comput. Phys. 192(1), 231 (2003)

    Article  ADS  MATH  Google Scholar 

  3. Chen Z., Lin C.D.: Classification of Coulomb three-body systems in hyperspherical co-ordinates. Phys. Rev. A42(1), 18 (1990)

    ADS  Google Scholar 

  4. Yalcin Z., Simsek M.: Potential harmonic approximation in atomic three-body systems with Fues–Kratzer-type potential. Int. J. Quantum Chem. 88(6), 735 (2002)

    Article  Google Scholar 

  5. Kleindienst L., Emrich R.: The atomic three-body problem. An accurate lower bond calculation using wave functions with logarithmic terms. Int. J. Quantum Chem. 37(3), 257 (1990)

    Article  Google Scholar 

  6. Baklanov E.V.: Ground state of negative positronium ion within the framework of the non-relativistic three-body problem. Laser Phys. 7(4), 970 (1997)

    Google Scholar 

  7. Dodd L.R.: Faddeev approach to atomic three-body problems. Phys. Rev. A9(4), 637 (1974)

    MathSciNet  ADS  Google Scholar 

  8. Harris, F.E.: Current Studies of Few Electron Systems. In: Lecture Series on Computer and Computational Sciences, vol. 1, p. 1 (2006)

  9. Krivec R., Mandelzweig V.B.: Matrix elements of potentials in the correlation function hyperspherical harmonic method. Phys. Rev. A42, 3779 (1990)

    ADS  Google Scholar 

  10. Haftel H.I., Mandelzweig V.B.: A fast convergent hyperspherical expansion for the helium ground state. Phys. Lett. A120(5), 232 (1987)

    ADS  Google Scholar 

  11. Haftel H.I., Mandelzweig V.B.: Exact solution of coupled equations and the hyperspherical formalism: calculation of expectation values and wavefunctions of three Coulomb-bound particles. Ann. Phys. 150(1), 48 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Rodriguez K.V., Ancarani L.U., Gasaneo G., Mitnik D.M.: Ground state for two-electron and electron-muon three-body atomic systems. Int. J. Quantum Chem. 110(10), 1820 (2010)

    Google Scholar 

  13. Smith V.H. Jr, Frolov A.M.: On properties of the helium-muonic and helium-antiprotonic atoms. J. Phys. B28(7), 1357 (1995)

    ADS  Google Scholar 

  14. Frolov A.M., Smith V.H. Jr: Bound state properties and astrophysical applications of negatively charged hydrogen ions. J. Chem. Phys. 119, 3130 (2003)

    Article  ADS  Google Scholar 

  15. Frolov A.M., Yeremin A., Yu J.: Ground bound states in two-electron systems with Z = 1. J. Phys. B22, 1263 (1989)

    ADS  Google Scholar 

  16. Thakkar A.J., Koga T.: Ground-state energies for the helium isoelectronic series. Phys. Rev. A50, 854 (1994)

    ADS  Google Scholar 

  17. Frolov A.M., Smith V.H. Jr: Universal variational expansion for three-body systems. J. Phys. B28, L449 (1995)

    ADS  Google Scholar 

  18. Goldman S.P.: Uncoupling Correlated Calculations in atomic physics: very high accuracy and ease. Phys. Rev. A57, R677 (1998)

    ADS  Google Scholar 

  19. Frolov A.M.: Bound state properties of negatively charged hydrogen like ions. Phys. Rev. A58, 4479 (1998)

    ADS  Google Scholar 

  20. Frolov A.M.: Properties and hyperfine structure of helium-muonic atoms. Phys. Rev. A61, 022509 (2000)

    ADS  Google Scholar 

  21. Frolov A.M.: Calculations of the 1s μ 2s e -electron-excited S(L = 0) states in helium-muonic atoms. Phys. Rev. A65, 024701 (2002)

    ADS  Google Scholar 

  22. Frolov A.M.: Lowest order QED corrections for the H and Mu ions. Phys. Lett. A345, 173 (2005)

    ADS  Google Scholar 

  23. Frolov A.M.: Bound state properties and hyperfine splitting in the S(L = 0)-states of the lithium-muonic systems. Phys. Lett. A353, 60 (2006)

    ADS  Google Scholar 

  24. Frolov A.M., Smith V.H. Jr: Exponential representation in the Coulomb three-body problem. J. Phys. B37, 2917 (2004)

    ADS  Google Scholar 

  25. Korobov R.: Bethe logarithm for the helium atom. Phys. Rev. A69, 054501 (2004)

    ADS  Google Scholar 

  26. Drake, G.W.F.: Units and constants. In: Springer Handbook of Atomic, Molecular, and Optical Physics, p. 1. Springer, Berlin (2005)

  27. Hylleraas E.A., Ore A.: Electron affinity of positronium. Phys. Rev. 71, 491 (1947)

    Article  ADS  MATH  Google Scholar 

  28. Hill R.N.: Proof that the H ion has only one bound state. Details and extension to finite nuclear mass. J. Math. Phys. 18, 2316 (1977)

    Article  ADS  Google Scholar 

  29. Mohr Peter J., Taylor Barry N.: The fundamental physical constants—recommended values of the basic constants and conversion values, from the 1998 adjustment. Phys. Today 55(8), BG6 (2002)

    Google Scholar 

  30. Drake G.W.F., Cassar Mark M., Nistor R.A.: Ground-state energies for helium, H, and Ps. Phys. Rev. A65, 054501 (2002)

    ADS  Google Scholar 

  31. Frolov A.M.: Variational expansions for the three-body coulomb problem. Zh. Eksp. Teor. Fiz 92, 1959 (1987)

    Google Scholar 

  32. Mills A.P. Jr.: Observation of the Positronium Negative Ion. Phys. Rev. Lett. 46, 717 (1981)

    Article  ADS  Google Scholar 

  33. Mills A.P. Jr.: Measurement of the decay rate of the positronium negative ion. Phys. Rev. Lett. 50, 671 (1983)

    Article  ADS  Google Scholar 

  34. Ho Y.K.: Autoionization states of the positronium negative ion. Phys. Rev. A 19, 2347 (1979)

    Article  ADS  Google Scholar 

  35. Ho Y.K.: Variational calculation of ground-state energy of positronium negative ions. Phys. Rev. A48, 4780 (1993)

    ADS  Google Scholar 

  36. Wen-Fang X.I.E.: Feature of a confined positronium negative ion by a spherical parabolic potential. Commun. Theor. Phys. (Beijing, China) 47, 547 (2007)

    Article  Google Scholar 

  37. Khan Md.A., Dutta S.K., Das T.K.: Computation of Raynal–Revai coefficients for the hyperspherical approach to a three-body system. FIZIKA B (Zagreb) 8(4), 469 (1999)

    ADS  Google Scholar 

  38. Lin C.D.: Hyperspherical coordinate approach to atomic and Coulombic three-body systems. Phys. Rept. 257, 1 (1995)

    Article  ADS  Google Scholar 

  39. Das T.K., Chattopadhyay R., Mukherjee P.K.: Hyperspherical harmonics approach to the ground and excited states of two electron atoms. Phys. Rev. A50, 3521 (1994)

    ADS  Google Scholar 

  40. Chattopadhyay R., Das T.K., Mukherjee P.K.: Hyperspherical harmonics expansion of the ground state of the Ps ion. Phys. Scripta 54, 601 (1996)

    Article  ADS  Google Scholar 

  41. Chattopadhyay R., Das T.K.: Adiabatic approximation in atomic three body systems. Phys. Rev. A56, 1281 (1997)

    ADS  Google Scholar 

  42. Das T.K., Coelho H.T., Fabredela Ripelle M.: Contribution of three body force to the trinucleon problem by an essentially exact calculation. Phys. Rev. C26, 2288 (1982)

    ADS  Google Scholar 

  43. Coelho H.T., Das T.K., Fabredela Ripelle M.: Effect of two pion exchange three nucleon forces on trinucleon systems. Phys. Lett. 109B, 255 (1982)

    ADS  Google Scholar 

  44. Das T.K., Coelho H.T.: Trinucleon Coulomb energy with inclusion of three body force. Phys. Rev. (Rapid comm) C26, 754 (1982)

    Article  ADS  Google Scholar 

  45. Das T.K., Coelho H.T.: Dependence of trinucleon observables on three body force. Phys. Rev. C26, 697 (1982)

    ADS  Google Scholar 

  46. Coelho H.T., Das T.K., Robilotta M.: Two pion exchange three nucleon force and the 3H and 3He nuclei. Phys. Rev. C28, 1812 (1983)

    ADS  Google Scholar 

  47. De T.B., Das T.K.: Calculation of geometrical structure coefficients for the trinucleon system with central and tensor interactions. Phys. Rev. C 36, 402 (1987)

    Article  ADS  Google Scholar 

  48. Brito V.P., Coelho H.T., Das T.K.: Adiabatic approximation in few body molecular and nuclear systems. Phys. Rev. A40, 3346 (1989)

    ADS  Google Scholar 

  49. Ghosh A.K., Das T.K.: Triton asymptotic normalization constants by the hyperspherical harmonics expansion method. Phys. Rev. C42, 1249 (1990)

    ADS  Google Scholar 

  50. Das T.K., Coelho H.T., Torreao J.R.A.: Hyperspherical harmonics approach for the trinucleon system with hard core potential. Phys. Rev. C45, 2640 (1992)

    ADS  Google Scholar 

  51. Bhattacharya S., Das T.K., Kanta K.P., Ghosh A.K.: Convergence of triton asymptotic wave function for hyperspherical harmonics expansion with two nucleon Reid soft core potential. Phys. Rev. C50, 2228 (1994)

    ADS  Google Scholar 

  52. Yakhelef A., Timofeyuk N.K., Al-Khalili J.S., Thompson I.J.: Few-Body Syst. 47, 213 (2010)

    Article  ADS  Google Scholar 

  53. Khan Md.A., Dutta S.K., Das T.K., Pal M.K.: Hyperspherical three-body calculation for neutron drip line nuclei. J. Phys. G: Nucl. Part. Phys. 24, 1519 (1998)

    Article  ADS  Google Scholar 

  54. Khan Md.A., Das T.K., Chakrabarti B.: Study of the excited state of double-Λ hypernuclei by hyperspherical supersymmetric approach. Int. J. Mod. Phys. E10(2), 107 (2001)

    ADS  Google Scholar 

  55. Khan Md.A., Das T.K.: Study of ΛΛ dynamics and ground state structure of low and medium mass double Λ hypernuclei. Pramana J. Phys. 56(1), 57 (2001)

    Article  ADS  Google Scholar 

  56. Khan Md.A., Das T.K.: Investigation of halo structure of 6He by hyperspherical three-body method. Pramana J. Phys. 57(4), 701 (2001)

    Article  ADS  Google Scholar 

  57. Dutta S.K., Khan Md.A., Das T.K., Chakrabarti B.: Calculation of resonances in weakly bound systems. Int. J. Mod. Phys. E13(4), 811 (2004)

    ADS  Google Scholar 

  58. Dutta S.K., Das T.K., Khan Md.A., Chakrabarti B.: Resonances in A = 6 nuclei: use of supersymmetric quantum mechanics. Few-Body Syst. 35, 33 (2004)

    ADS  Google Scholar 

  59. Dutta S.K., Das T.K., Khan Md.A., Chakrabarti B.: Computation of 2+ resonance in 6He: bound state in the continuum. J. Phys. G: Nucl. Part. Phys. 29, 2411 (2003)

    Article  ADS  Google Scholar 

  60. Khan Md.A., Das T.K.: Investigation of exotic \({^6_{\Lambda\Lambda}}\) He hypernuclei by the hyperspherical three-body method. FIZIKA B9(2), 55 (2000)

    ADS  Google Scholar 

  61. Khan Md.A., Das T.K.: Investigation of ΛΛ dynamics and effective ΛN interaction in low and medium mass hypernuclei. FIZIKA B10(2), 83 (2001)

    ADS  Google Scholar 

  62. Richard J.M.: The non-relativistic three-body problem for baryons. Phys. Rep. 212, 1 (1992)

    Article  ADS  Google Scholar 

  63. Leeb H., Fiedeldey H., Gavin E.G.O., Sofianos S.A., Lipperheide R.: Quark quark potentials from the inversion of baryon spectra and its application to the Roper resonance. Few-Body Syst. 12, 55 (1992)

    Article  ADS  Google Scholar 

  64. Barnea N., Novoselsky A.: Construction of hyperspherical functions symmetrized with respect to the orthogonal and symmetric groups. Ann. Phys. (New York) 256, 192 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Watanabe S., Hosoda Y., Kato D.: Hyperspherical close-coupling method extended to the two-electron continuum region: test on the s-wave model for e-H scattering. J. Phys. B26, L495 (1993)

    ADS  Google Scholar 

  66. Ballot J.L., Fabredela Ripelle M.: Application of the hyperspherical formalism to the trinucleon bound state problems. Ann. Phys. (New York) 127, 62 (1980)

    Article  ADS  Google Scholar 

  67. Raynal J., Revai J.: Transformation coefficients in the hyperspherical approach to the three-body problem. Il Nuo. Cim. A68(4), 612 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  68. Youping G., Fuqing L., Lim T.K.: Program to calculate Raynal–Revai coefficients of a three-body system in two or three dimensions. Comp. Phys. Comm. 47, 149 (1987)

    Article  ADS  Google Scholar 

  69. Cohen E.R., Taylor B.N.: CODATA recommended values of the fundamental physical constants. Phys. Today 51, 8–BG9 (1998)

    Google Scholar 

  70. Cohen E.R., Taylor B.N.: CODATA recommended values of the fundamental physical constants. Phys. Today 53, 8–BG11 (2000)

    Google Scholar 

  71. Johnson B.R.: The renormalized Numerov method applied to calculating bound states of the coupled-channel Schroedinger equation. J. Chem. Phys. 69, 4678 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abdul Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.A. Hyperspherical Three-Body Calculation for Exotic Atoms. Few-Body Syst 52, 53–63 (2012). https://doi.org/10.1007/s00601-011-0264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-011-0264-3

Keywords

Navigation