Skip to main content
Log in

Solutions of the Two-Body Salpeter Equation Under an Exponential Potential for Any l State

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The two-body Salpeter equation is analytically solved for an interaction of exponential form. We see that after using appropriate approximations, the problem appears as the well-known Morse potential whose solutions are already known from the supersymmetry quantum mechanics. The results are useful in some branches of physics and in particular in dealing with heavy quark systems. The solutions are reported for any l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salpeter E.E., Bethe H.A.: A relativistic equation for bound-state problems. Phys. Rev. 84, 1232–1242 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Wick G.C.: Properties of Bethe–Salpeter wave function. Phys. Rev. 96, 1124–1134 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Pieter M., Roberts C.D.: Dyson Schwinger equations. Int. J. Mod. Phys. E 12, 297–365 (2003)

    Article  ADS  Google Scholar 

  4. Chang L., Roberts C.D.: Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  5. Roberts C.D., Williams A.G.: Dyson–Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477–575 (1994)

    Article  ADS  Google Scholar 

  6. Roberts C.D., Schmidt S.M.: Dyson–Schwinger equations: density, temperature and continuum strong QCD. Prog. Part. Nucl. Phys. 45, 1–103 (2000)

    Article  ADS  Google Scholar 

  7. Pieter M., Roberts C.D.: π- and K-meson Bethe–Salpeter amplitudes. Phys. Rev. C 56, 3369–3383 (1997)

    Article  ADS  Google Scholar 

  8. Nakanishi N.: A general survey of the theory of the Bethe–Salpeter equation. Prog. Theor. Phys. Suppl. 43, 1–81 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Li Z.F. et al.: Stability in the instantaneous Bethe–Salpeter formalism: a reduced exact-propagator bound-state equation with harmonic interaction. J. Phys. G: Nucl. Part. Phys 35, 115002 (2008)

    Article  ADS  Google Scholar 

  10. Lucha W., Schoberl F.F.: Semirelativistic treatment of bound states. Int. J. Mod. Phys. A 14, 2309–2334 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Lucha W., Schoberl F.F.: Bound states by the spinless Salpeter equation. Fizika B 8, 193–206 (1999)

    ADS  Google Scholar 

  12. Lucha W., Schoberl F.F.: Instantaneous Bethe–Salpeter equation: improved analytical solution. Int. J. Mod. Phys. A 17, 2233 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Hall R., Lucha W.: Schrödinger upper bounds to semirelativistic eigenvalues. J. Phys. A: Math. Gen 38, 7997 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Hall R., Lucha W.: Klein–Gordon lower bound to the semirelativistic ground-state energy. Phys. Lett. A 374, 1980–1984 (2010)

    Article  ADS  Google Scholar 

  15. Lucha W., Schoberl F.F.: Relativistic Coulomb problem: analytic upper bounds on energy levels. Phys. Rev. A 54, 3790–3794 (1996)

    Article  ADS  Google Scholar 

  16. Lucha W., Schöberl F.F.: Accuracy of approximate eigenstates. Int. J. Mod. Phys. A 15, 3221–3236 (2000)

    ADS  MATH  Google Scholar 

  17. Hall R., Lucha W., Schöberl F.F.: Discrete spectra of semirelativistic hamiltonians. Int. J. Mod. Phys. A 18, 2657–2680 (2003)

    Article  ADS  MATH  Google Scholar 

  18. Hall R., Lucha W., Schöberl F.F.: Energy bounds for the spinless Salpeter equation: harmonic oscillator. J. Phys. A 34, 5059–5064 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Hall R., Lucha W., Schöberl F.F.: Discrete spectra of semirelativistic Hamiltonians from envelope theory. Int. J. Mod. Phys. A 17, 1931–1952 (2002)

    Article  ADS  MATH  Google Scholar 

  20. Hall R., Lucha W.: Semirelativistic stability of N-boson systems bound by 1/r ij pair potentials. J. Phys. A: Math. Theor. 41, 355202 (2008)

    Article  MathSciNet  Google Scholar 

  21. Lucha W., Schoberl F.F.: Variational approach to the spinless relativistic Coulomb problem. Phys. Rev. D 50, 5443–5445 (1994)

    Article  ADS  Google Scholar 

  22. Hall R., Lucha W., Schoberl F.F.: Energy bounds for the spinless Salpeter equation: harmonic oscillator. J. Phys. A: Math. Gen. 34, 5059 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Hall R., Lucha W.: Schrödinger secant lower bounds to semirelativistic eigenvalues. Int. J. Mod. Phys. A 22, 1899–1904 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Lucha W., Schöberl F.F., Gromes D.: Bound states of quarks. Phys. Rep. 200, 127–240 (1991)

    Article  ADS  Google Scholar 

  25. Qiang W.C., Dong S.H.: Arbitrary l-state solutions of the rotating Morse potential through the exact quantization rule method. Phys. Lett. A 363, 169 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Qiang W.C., Dong S.H.: Analytical approximations to the solutions of the Manning Rosen potential with centrifugal term. Phys. Lett. A 368, 13 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Dong S.H., Qiang W.C., Sun G.H., Bezerra V.B.: Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckhart potential. J. Phys. A. 40, 10535 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Wei G.F., Long C.Y., dong S.H.: The scattering of the Manning–Rosen potential with centrifugal term. Phys. Lett. A 372, 2592 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Dong S.H., Qiang W.C., Garcia-Ravelo J.: Analytical approximations to the SCHRÖDINGER Equation for a Second PÖSCHL-TELLER-LIKE potential with centrifugal term. Int. J. Mod. Phys. A 23, 1537 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Qiang W.C., Dong S.H.: Analytical approximations to the l-wave solutions of the Klein Gordon equation for a second Pöschl Teller like potential. Phys. Lett. A 372, 4789 (2008)

    Article  ADS  MATH  Google Scholar 

  31. Wei G.F., dong Wei S.H., Dong: Approximately analytical solutions of the Manning Rosen potential with the spin orbit coupling term and spin symmetry. Phys. Lett. A 373, 49 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Qiang W.C., Dong S.H.: The Manning–Rosen potential studied by a new approximate scheme to the centrifugal term. Phys. Scr. 79, 045004 (2009)

    Article  ADS  Google Scholar 

  33. Qiang W.C., Wu J.Y., Dong S.H.: The Eckart-like potential studied by a new approximate scheme to the centrifugal term. Phys. Scr. 79, 065011 (2009)

    Article  ADS  Google Scholar 

  34. Ikhdair S.M., Sever R.: Bound-states of the spinless Salpeter equation for the pt-symmetric generalized Hulthen potential by the Nikiforov–Uvarov Method. Int. J. Mod. Phys. E 17, 1107 (2008)

    Article  ADS  Google Scholar 

  35. Jaczko G., Durand L.: Understanding the success of nonrelativistic potential models for relativistic quark–antiquark bound state. Phys. Rev. D 58, 114017 (1998)

    Article  ADS  Google Scholar 

  36. Ikhdair S.M., Sever R.: Heavy-quark bound states in potentials with the Bethe–Salpeter equation. Z. Phys. C 56, 155 (1992)

    Article  ADS  Google Scholar 

  37. Ikhdair S.M., Sever R.: Bethe–Salpeter equation for non-self conjugate mesons in a power-law potential. Z. Phys. C 58, 153 (1993)

    Article  ADS  Google Scholar 

  38. Ikhdair S.M., Sever R.: Spectroscopy of B c meson in a semi-relativistic quark model using the shifted large-N expansion method. Int. J. Mod. Phys. A 19(11), 1771 (2004)

    Article  ADS  Google Scholar 

  39. Ikhdair S.M., Sever R.: Mass spectra of heavy quarkonia and B c decay constant for static scalar-vector interactions with relativistic kinematics. Int. J. Mod. Phys. A 20(28), 6509 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Lucha W.: Bethe–Salpeter equation with instantaneous confinement: establishing stability of bound states. AIP Comf. Proc. 1317, 122 (2010)

    Article  ADS  Google Scholar 

  41. Arafah M.R. et al.: Power law potential and quarkonium. Ann. Phys. 220, 55 (1992)

    Article  ADS  Google Scholar 

  42. Olson C. et al.: QCD, relativistic flux tubes, and potential models. Phys. Rev. D 45, 4307 (1992)

    Article  ADS  Google Scholar 

  43. Durand B., Durand L.: Relativistic duality, and relativistic and radiative corrections for heavy-quark systems. Phys. Rev. D 25, 2312 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  44. Durand B., Durand L.: Connection of relativistic and nonrelativistic wave functions in the calculation of leptonic widths. Phys. Rev. D 30, 1904 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  45. Nickisch J., Durand L., Durand B.: Salpeter equation in position space: numerical solution for arbitrary confining potentials. Phys. Rev. D 30, 660 (1984)

    Article  ADS  Google Scholar 

  46. Berkdemir C.: Pesudospin symmetry in the relativistic Morse potential including the spin–orbit coupling term. Nucl. Phys. A 770, 32–39 (2006)

    Article  ADS  Google Scholar 

  47. Li B.Q., Chao K.T.: Higher charmonia and X, Y, Z states with screened potential. Phys. Rev. D 79, 094004 (2009)

    Article  ADS  Google Scholar 

  48. Jaczko G., Durand L.: Understanding the success of nonrelativistic potential models for relativistic quark–antiquark bound states. Phys. Rev. D 58, 114017 (1998)

    Article  ADS  Google Scholar 

  49. Junker G.: Supersymmetric Methods in Quantum and Statistical Physics. Springer, Berlin (1996)

    MATH  Google Scholar 

  50. Bagchi B.: Supersymmetry in Quantum and Classical Mechanics. Chapman and Hall/CRC, Boca Raton (2000)

    Book  Google Scholar 

  51. Cooper F. et al.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267–385 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  52. Lahiri A., Roy P.K., Bagchi B.: Supersymmetry in atomic physics and the radial problem. J. Phys. A 20, 3825 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  53. Kostelecky V.A., Nieto M.M.: Evidence form alkali-metal-atom transition probabilities for a phenomenological supersymmetry. Phys. Rev. A 32, 1293 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  54. Kostelecky V.A., Nieto M.M.: Evidence for a phenomenological supersymmetry in atomic physics. Phys. Rev. Lett. 53, 2285 (1984)

    Article  ADS  Google Scholar 

  55. Kostelecky V.A., Nieto M.M.: Supersymmetry and the relationship between the Coulomb and oscillator problems in arbitrary dimensions. Phys. Rev. D 32, 3243 (1985)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zarrinkamar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarrinkamar, S., Rajabi, A.A. & Hassanabadi, H. Solutions of the Two-Body Salpeter Equation Under an Exponential Potential for Any l State. Few-Body Syst 52, 165–170 (2012). https://doi.org/10.1007/s00601-011-0272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-011-0272-3

Keywords

Navigation