Skip to main content
Log in

Fermion Flavors in Quaternion Basis and Infrared QCD

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

I analyze the lattice simulation data of the Domain Wall Fermion in quaternion basis. As pointed out by Atiyah and Ward, the minimum action solution for SU(2) Yang–Mills fields in Euclidean 4-space correspond, via Penrose twistor transform, to algebraic bundles on the complex projective 3-space. Assuming dominance of correlation between the fermions on the domain walls via exchange of instantons, I extract parameters necessary for defining gauge fields of Atiyah–Ward ansatz. The QCD effective coupling in the infrared and the relation between the number of flavors and the infrared fixed point is investigated. Consequence of this lepton flavor assignment to phenomenology of baryons is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banks T., Zaks A.: On the phase structure of vector-like gauge theories with massless fermion. Nucl. Phys. B 196, 189 (1982)

    Article  ADS  Google Scholar 

  2. Appelquist, T., Fleming, G.T., Neil, E.T.: Lattice study of the conformal window in QCD-like theories. Phys. Rev. Lett. 100, 171607 (2008); Errata Phys. Rev. Lett. 102, 149902 (2009)

    Google Scholar 

  3. Appelquist T.: Lattice explorations of TeV physics. Prog. Theor. Phys. (Kyoto) 180, 79 (2009)

    ADS  Google Scholar 

  4. Rubio, P.P., Sint, S.: Non-perturbative running of the coupling from four flavour lattice QCD with staggered quarks. In: Lattice 2010 Conference Proceedings. arXiv:1011.6580[hep-lat]

  5. Fodor, Z., Holland, K., Kuti, J., Nógrádi, D., Schroeder, Ch.: Twelve massless flavors and three colors below the conformal window. arXiv:1104.3124[hep-lat]

  6. Dietrich D., Sannino F.: Conformal window of SU(N) gauge theories with fermions in higher dimensional representations. Phys. Rev. D 75, 085018 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  7. Ryttov T.A., Sannino F.: Supersymmetry inspired QCD beta function. Phys. Rev. D 78, 065001 (2008)

    Article  ADS  Google Scholar 

  8. Grunberg G.: A proposal to solve the Landau ghost and renormalon problems. Phys. Lett. B 349, 469 (1995)

    Article  ADS  Google Scholar 

  9. Gardi E., Grunberg G.: Conformal expansion and renormalons. Phys. Lett. B 517, 215 (2001) arXiv:hep-ph/0107300

    Article  ADS  MATH  Google Scholar 

  10. Grunberg G.: Conformal window and Landau singularity. JHEP 0108, 019 (2001) arXiv:hep-ph/0104098v2

    Article  ADS  Google Scholar 

  11. Allton C. et al.: (RBC/UKQCD collaboration): 2+1 flavor domain wall QCD on a (2fm)3 lattice, light meson spectroscopy with L s  = 16. Phys. Rev. D 76, 014504 (2007) arXiv:hep-lat/0701013

    Article  ADS  Google Scholar 

  12. Furui, S., Nakajima, H.: Roles ofthe quark field in the infrared lattice Coulomb gauge and Landau gauge QCD. In: PoS (Lattice 2007), 301 (2007). arXiv:0708.1421[hep-lat]

  13. Deur A., Burkert V., Chen J.P., Korsch W.: Experimental determination of the effective strong coupling constant. Phys. Lett. B 650, 244 (2006)

    ADS  Google Scholar 

  14. Deur, A., Burkert, V., Chen, J.P., Korsch, W.: Determination of effective strong coupling constant α s, g1(Q *2) from CLAS spin structure function data. Phys. Lett. B 665, 349 (2008). arXiv: 0803.4119[hep-ph]

    Google Scholar 

  15. Wolfram, S.: Mathematica 8. Wolfram Research (2010)

  16. Brodsky S.J., de Téramond G., Deur A.: Nonperturbative QCD coupling and its β function from light-front holography. Phys. Rev. D 81, 096010 (2010) arXiv:1002.3948[hep-ph]

    Article  ADS  Google Scholar 

  17. Téramond G.F., Brodsky S.J.: Hadronic spectrum of a holographic dual of QCD. Phys. Rev. Lett. 94, 201601 (2005)

    Article  ADS  Google Scholar 

  18. Brodsky S.J., Lepage G.P., Mackenzie P.B.: On the elimination of scale ambiguities in perturbative quantum chromodynamics. Phys. Rev. D 28, 228 (1983)

    Article  ADS  Google Scholar 

  19. Brodsky S.J., Menke S., Merino C., Rathsman J.: On the behavior of effective QCD coupling ατ(s) at low energy. Phys. Rev. D 67, 055008 (2003) arXiv: hep-ph/0212078

    Article  ADS  Google Scholar 

  20. Beneke, M., Braun, V.N.: Naive nonabelianization and resummation of fermion bubble chains. Phys. Lett. B 348, 513 (1995). arXiv:hep-ph/9411229

    Google Scholar 

  21. Brodsky S.J., Gardi E., Grunberg G., Rathman J.: Disentangling running coupling and conformal effects in QCD. Phys. Rev. D 63, 094017 (2001)

    Article  ADS  Google Scholar 

  22. Brodsky S.J., Shrock R.: Maximum wavelength of confined quarks and gluons and properties of quantum chromodymnamics. Phys. Lett. B 666, 95 (2008) arXiv:0806.1535 [hep-th]

    Article  ADS  Google Scholar 

  23. Lüscher M., Narayanan R., Weisz P., Wolff U.: The Schrödinger functional—a renormalizable probe for non-abelian gauge theories. Nucl. Phys. B 384, 168 (1992)

    Article  ADS  Google Scholar 

  24. t’Hooft G.: Computation of the quantum effects due to a four dimensional pseudoparticles. Phys. Rev. D 14, 3432 (1976)

    Article  ADS  Google Scholar 

  25. Atiyah M.F., Ward R.S.: Instantons and algebraic geometry. Commun. Math. Phys. 55, 117 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Penrose R.: Twistor algebra. J. Math. Phys. 8, 345 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Furui S.: The self-dual gauge fields and the domain wall fermion zero modes. Few Body Syst. 46, 211 (2009)

    ADS  Google Scholar 

  28. Louno P.: Clifford Algebras and Spinors. 2nd edn. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  29. Kaplan D.B.: A method for simulating chiral fermion on the lattice. Phys. Lett. B 288, 342 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  30. Narayanan R., Neuberger H.: Infinitely many regulator fields for chiral fermions. Phys. Lett. B 302, 93 (1993)

    Google Scholar 

  31. Shamir Y.: The euclidean spectrum of Kaplan’s lattice chiral fermions. Phys. Lett. B 305, 357 (1993)

    Article  ADS  Google Scholar 

  32. Cartan, É.: The theory of Spinors. p. 118. Dover Publications, New York (1966). [La Theorie des Spineurs. Hellman, Paris (1938)]

  33. Corrigan E., Goddard P.: An n monopole solutions with 4n-1 degrees of freedom. Commun. Math. Phys. 80, 575 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  34. Takasaki, K.: The World of Twistors. Kyouritu Shuppan Publications, Tokyo (2005) (in Japanese)

  35. Furui S., Nakajima H.: Correlation of the ghost and the quark in the lattice landau gauge QCD. Braz. J. Phys. 37, 186 (2007) arXiv:hep-lat.0609024

    Article  Google Scholar 

  36. Ma E.: A 4 symmetry and neutrinos with very different masses. Phys. Rev. D 82, 037301 (2010)

    Article  ADS  Google Scholar 

  37. Becher, P., Böhm, M., Joos, H.: Eichtheorien. Teubner, Stuttgart (1982)

  38. Glashow S.L., Iliopoulos J., Maiani L.: Weak interactions with Lepton–Hadron symmetry. Phys. Rev. D 2, 1285 (1970)

    Article  ADS  Google Scholar 

  39. Ipp A., Kajantie K., Rebhan A., Vuorinen A.: Pressure of deconfined QCD for all temperatures and quark chemical potentials. Phys. Rev. D 74, 045016 (2006)

    Article  ADS  Google Scholar 

  40. Furui, S.: Lattice Simulations in MOM v.s. Schrödinger Functional Scheme and Triality. In: AIP Conference Proceedings No 1343. p. 534. Baryons’10, RCNP Osaka University, December 2010

  41. Linde A.D.: Infrared problem in the thermodynamics of the Yang–Mills gas. Phys. Lett. B 96, 289 (1980)

    Article  ADS  Google Scholar 

  42. Nakamura K. et al.: (Particle Data Group), Review of particle physics. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  43. Hara, K., et al. (The Belle collaboration): Evidence of \({B\to \tau\bar\nu}\) with a semileptonic tagging method. Phys. Rev. D82,071101 (2010). arXiv:1006.4201v3[hep-ex]

  44. Lunghi E., Soni A.: Possible evidence for the breakdown of the CKM-paradigm of CP-violation. Phys. Lett. B 697, 323 (2011) arXiv:1010.6092v2[hep-ph]

    Article  ADS  Google Scholar 

  45. Labelle P.: Supersymmetry Demystified. McGrawHill, NewYork (2010)

    Google Scholar 

  46. Georgi H.: Unparticle physics. Phys. Rev. Lett. 98, 221601 (2007)

    Article  ADS  Google Scholar 

  47. Eichten E., Lane K.: Dynamical breaking of weak interaction symmetries. Phys. Lett. B 90, 125 (1980)

    Article  ADS  Google Scholar 

  48. Chivukula, R.S., Simmons, E.H.: Technicolor and lattice gauge theory. In: PoS Lattice 2010. arXiv:1011.2535v1 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadataka Furui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furui, S. Fermion Flavors in Quaternion Basis and Infrared QCD. Few-Body Syst 52, 171–187 (2012). https://doi.org/10.1007/s00601-011-0274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-011-0274-1

Keywords

Navigation