Skip to main content
Log in

Nuclear Astrophysics from View Point of Few-Body Problems

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Few-body systems provide very useful tools to solve different problems for nuclear astrophysics. This is the case of indirect techniques, developed to overcome some of the limits of direct measurements at astrophysical energies. Here the Coulomb dissociation, the asymptotic normalization coefficient and the Trojan Horse method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baur G., Bertulani C., Rebel H.: Coulomb dissociation as a source of information on radiative capture processes of astrophysical interest. Nuc. Phys. A 458, 186 (1986)

    Article  ADS  Google Scholar 

  2. Baur G., Rebel H.: Coulomb breakup of nuclei—applications to astrophysics. Annu. Rev. Nucl. Part. Sci. 46, 321 (1996)

    Article  ADS  Google Scholar 

  3. Motobayashi T. et al.: Coulomb dissociation of 8B and the 7(p, γ)8 B reaction at low energies. Phys. Rev. Lett. 73, 2680 (1994)

    Article  ADS  Google Scholar 

  4. Davids B. et al.: S17(0) determined from the Coulomb Breakup of 83 MeV/Nucleon 8B. Phys. Rev. Lett. 86, 2750 (2001)

    Article  ADS  Google Scholar 

  5. Schuemann F. et al.: Coulomb dissociation of 8B and the low-energy cross section of the 7 Be(p, γ)8 B solar fusion reaction. Phys. Rev. Lett. 90, 232501 (2003)

    Article  ADS  Google Scholar 

  6. Esbensen H. et al.: Reconciling Coulomb dissociation and radiative capture measurements. Phys. Rev. Lett. 94, 42502 (2005)

    Article  ADS  Google Scholar 

  7. Gai M. et al.: Critical assessment of the claim of a significant difference between the results of measurements of the Coulomb dissociation of 8B and the 7 Be(p, γ)8 B direct capture reaction. Phys. Rev C 74, 025810 (2006)

    Article  ADS  Google Scholar 

  8. Motobayashi T. et al.: Determination of the astrophysical 13 N(p, γ)14 O cross section through the Coulomb dissociation method. PLB 264, 259 (1991)

    Article  Google Scholar 

  9. Hammache F. et al.: High-energy breakup of 6Li as a tool to study the Big Bang nucleosynthesis reaction 2 H(α, γ)6 Li. Phys. Rev. C 82, 065803 (2010)

    Article  ADS  Google Scholar 

  10. Esbensen H. et al.: Coulomb dissociation of 15C and radiative neutron capture on 14 C. Phys. Rev. C 80, 024608 (2009)

    Article  ADS  Google Scholar 

  11. Mukhamedzhanov A.M., Tribble R.E.: Connection between asymptotic normalization coefficients, subthreshold bound states and resonances. Phys. Rev. C 59, 3418 (1999)

    Article  ADS  Google Scholar 

  12. Mukhamedzhanov A.M. et al.: Asymptotic normalization coefficient for 10 B9 Be + p. Phys. Rev. C 56, 1302 (1997)

    Article  ADS  Google Scholar 

  13. Azhari A. et al.: Asymptotic normalization coefficient for 7 Be(p, γ)8 B. Phys. Rev. C 63, 055803 (2001)

    Article  ADS  Google Scholar 

  14. Gagliardi C.A. et al.: Tests of transfer reaction determinations of astrophysical S factors. Phys. Rev. C 59, 1149 (1999)

    Article  ADS  Google Scholar 

  15. Imai N. et al.: Test of the ANC method via (d,p) reaction. Nucl. Phys. A 688, 281 (2001)

    Article  ADS  Google Scholar 

  16. Bertone F.P. et al.: 14 N(3 He,d)15 O as a probe of direct capture in the 14 N(p, γ)15 O reaction. Phys. Rev. C 66, 055804 (2002)

    Article  ADS  Google Scholar 

  17. Kubono S. et al.: Determination of the Subthreshold State Contribution in 13 C(α,n 16 O, the main neutron-source reaction for the s process. Phys. Rev. Lett. 90, 062501 (2003)

    Article  ADS  Google Scholar 

  18. Skorodumov S. et al.: Lowest excited states of 13 O. Phys. Rev. C 75, 024607 (2007)

    Article  ADS  Google Scholar 

  19. Mukhamedzhanov A.M. et al.: Asymptotic normalization coefficient and important astrophysical process 15 N(p, γ)160. J. Phys. Conf. Ser. 202, 012017 (2010)

    Article  ADS  Google Scholar 

  20. Spitaleri C. et al.: The Trojan Horse Method in nuclear astrophysics. Phys. Atomic Nuclei 74(12), 1725 (2011)

    Article  ADS  Google Scholar 

  21. Tumino A., et al.: New advances in the Trojan Horse method as an indirect approach to nuclear astrophysics. Few-Body Syst. (2012). doi:10.1007/s00601-012-0407-1

  22. Spitaleri C. et al.: Indirect 7Li(p.α)4He reaction at astrophysical energies. Phys. Rev. C 60, 055802 (1999)

    Article  ADS  Google Scholar 

  23. Tumino, A., et al.: Validity test of the Trojan Horse Method applied to the 7Li + pα + α reaction via the 3He break-up. Eur. Phys. J. A. (2006). doi:10.11140/epja/i2006-08-038-1

  24. Tumino A. et al.: Validity test of the “Trojan Horse” method applied to the 6Li(p,α)3He reaction. Phys. Rev. C 67, 065803 (2003)

    Article  ADS  Google Scholar 

  25. Spitaleri C. et al.: “Trojan Horse” method applied to 2H(6 Li,α)4 He at astrophysical energies. Phys. Rev. C 63, 005801 (2001)

    Article  ADS  Google Scholar 

  26. Wen Q. et al.: Trojan Horse method applied to 9Be>(p,α)6 Li at astrophysical energies. Phys. Rev. C 78, 035805 (2008)

    Article  ADS  Google Scholar 

  27. Lamia L. et al.: Indirect study of (p, α) and (n, α) reactions induced on boron isotopes. Il Nuovo Cimento 31, 423 (2009)

    ADS  Google Scholar 

  28. Spitaleri C. et al.: The 11 B(p, α 0)8Be reaction at sub-Coulomb energies via the Trojan Horse method. Phys. Rev.C 69, 055806 (2004)

    Article  ADS  Google Scholar 

  29. Lamia L. et al.: New measurement of the 11B(p,α 0)8Be bare-nucleus S(E) factor via the Trojan Horse method. J. Phys. G 39, 015106 (2012)

    Article  ADS  Google Scholar 

  30. Cognata M. La et al.: Astrophysical S(E) factor of the 15N(p,α)12C reaction at sub-Coulomb energies via the Trojan horse method. Phys. Rev.C 76, 065804 (2007)

    Article  ADS  Google Scholar 

  31. Cognata M. La et al.: A novel approach to measure the cross section of the 18O(p,α)15N resonant reaction in the 0-200 keV energy range. Astrophys. J. Lett. 708, 796 (2010)

    Article  ADS  Google Scholar 

  32. Sergi M.L. et al.: Indirect measurement of 17O(p,α)14N cross section at ultra-low energies. Phys. Rev. C 82, 032801(R) (2010)

    Article  ADS  Google Scholar 

  33. Cognata M. La et al.: Bare-nucleus astrophysical factor of the 3He(d,p)4He reaction via the “Trojan Horse” method. Phys. Rev. C 72, 065802 (2005)

    Article  ADS  Google Scholar 

  34. Rinollo A. et al.: Measurement of cross section and astrophysical factor of the 2H(d,p)3H reaction using the Trojan Horse Method. Nucl. Phys. A 758, 146 (2005)

    Article  ADS  Google Scholar 

  35. Spitaleri C. et al.: The α12C scattering studied via the Trojan Horse method. Eur. Phys. J. A 7, 181 (2000)

    ADS  Google Scholar 

  36. Tumino A. et al.: Quasi-free 6 Li(n,α)3 H reaction at low energy from 2H break-up. Eur. Phys. J. A 25, 649 (2005)

    Article  Google Scholar 

  37. Gulino M. et al.: Study of the 6 Li(n, α) 3H reaction via the 2H quasi-free break-up. J.Phys. G Nucl. Part. Phys. 37, 125105 (2010)

    Article  ADS  Google Scholar 

  38. Tumino, A., et al.: Suppression of the Coulomb interaction in the off-energy-shell p-p scattering from p + dp + p + n reaction. Phys. Rev. Lett. 98, 252502 (2007)

  39. Tumino A. et al.: Off-energy-shell p-p scattering at sub-Coulomb energies via the Trojan Horse method. Phys. Rev. C 68, 064001 (2008)

    Article  ADS  Google Scholar 

  40. Tumino, A., et al.: Low-energy d+d fusion reactions via the Trojan Horse Method. Phys. Letters B 700, 111 (2011) and Erratum to “Low-energy d+d fusion reactions via the Trojan Horse Method”. Phys. Lett. B 700(2), 111 (2011). Tumino, A., et al., Phys. Lett. B. 705(5), 546 (2011)

  41. Tumino A. et al.: Indirect study of the 2 H(d,p)3 H and 2 H(d,n)3 He reactions at astrophysical energies via the Trojan Horse Method. Few Body Syst. 323(1–4), 50 (2011)

    Google Scholar 

  42. Cognata M. La et al.: The Fluorine destruction in stars: first experimental study of the 19F(p, α 0)16O reaction at astrophysical energies. Astrophys. J. Lett. 739, L54 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tumino.

Additional information

Plenary talk at the 20th International IUPAP Conference on Few-Body Problems in Physics, Fukuoka, Japan, 20–25 August 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tumino, A., Spitaleri, C., Bertulani, C. et al. Nuclear Astrophysics from View Point of Few-Body Problems. Few-Body Syst 54, 869–875 (2013). https://doi.org/10.1007/s00601-013-0690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-013-0690-5

Keywords

Navigation